The aim of this technical brief is to provide a numerical approach to investigate the lubricity enhancement effect of microgrooves texture on tools' rake face. The key parameters related to cutting condition and grooves morphology were considered in the analytical model of tool–chip friction pair. The fully textured surfaces with the periodic microgrooves were systematically studied by solving the nondimensional Reynolds equation with the multigrid method. The results indicated that the microgrooves texture generates extra carrying capacity comparing to the flat tool and the optimum grooves direction is vertical to the chip sliding. Higher area density and optimum grooves width can further promote hydrodynamic lubrication. By modifying the tool rake face geometry to restrict the tool–chip slope angle, efficiency of surface texture could be greatly extended. In addition, the film's average pressure was nearly proportional to the chip velocity. Hence, the textured tool is more effective in high-speed cutting.

References

1.
Fatima
,
A.
, and
Mativenga
,
P. T.
,
2014
, “
Femtosecond Laser Surface Structuring of Carbide Tooling for Modifying Contact Phenomena
,”
Proc. Inst. Mech. Eng., Part B
,
228
(
11
), pp.
1325
1337
.
2.
Koshy
,
P.
, and
Tovey
,
J.
,
2011
, “
Performance of Electrical Discharge Textured Cutting Tools
,”
CIRP Ann.-Manuf. Technol.
,
60
(
1
), pp.
153
156
.
3.
Xie
,
J.
,
Luo
,
M. J.
,
He
,
J. L.
,
Liu
,
X. R.
, and
Tan
,
T. W.
,
2012
, “
Micro-Grinding of Micro-Groove Array on Tool Rake Surface for Dry Cutting of Titanium Alloy
,”
Int. J. Precis. Eng. Manuf.
,
13
(
10
), pp.
1845
1852
.
4.
Sugihara
,
T.
, and
Enomoto
,
T.
,
2013
, “
Crater and Flank Wear Resistance of Cutting Tools Having Micro Textured Surfaces
,”
Precis. Eng.
,
37
(
4
), pp.
888
896
.
5.
Kümmel
,
J.
,
Braun
,
D.
,
Gibmeier
,
J.
,
Schneider
,
J.
,
Greiner
,
C.
,
Schulze
,
V.
, and
Wanner
,
A.
,
2015
, “
Study on Micro Texturing of Uncoated Cemented Carbide Cutting Tools for Wear Improvement and Built-Up Edge Stabilisation
,”
J. Mater. Process. Technol.
,
215
(1), pp.
62
70
.
6.
Fatima
,
A.
, and
Mativenga
,
P. T.
,
2013
, “
Assessment of Tool Rake Surface Structure Geometry for Enhanced Contact Phenomena
,”
Int. J. Adv. Manuf. Technol.
,
69
(
1–4
), pp.
771
776
.
7.
Kawasegi
,
N.
,
Sugimori
,
H.
,
Morimoto
,
H.
,
Morita
,
N.
, and
Hori
,
I.
,
2009
, “
Development of Cutting Tools With Microscale and Nanoscale Textures to Improve Frictional Behavior
,”
Precis. Eng.
,
33
(
3
), pp.
248
254
.
8.
Obikawa
,
T.
,
Kamio
,
A.
,
Takaoka
,
H.
, and
Osada
,
A.
,
2011
, “
Micro-Texture at the Coated Tool Face for High Performance Cutting
,”
Int. J. Mach. Tool. Manuf.
,
51
(
12
), pp.
966
972
.
9.
Sugihara
,
T.
, and
Enomoto
,
T.
,
2012
, “
Improving Anti-Adhesion in Aluminum Alloy Cutting by Micro Stripe Texture
,”
Precis. Eng.
,
36
(
2
), pp.
229
237
.
10.
Chang
,
W.
,
Sun
,
J.
,
Luo
,
X.
,
Ritchie
,
J. M.
, and
Mack
,
C.
,
2011
, “
Investigation of Microstructured Milling Tool for Deferring Tool Wear
,”
Wear
,
271
(
9–10
), pp.
2433
2437
.
11.
Murthy
,
A. N.
,
Etsion
,
I.
, and
Talke
,
F. E.
,
2007
, “
Analysis of Surface Textured Air Bearing Sliders With Rarefaction Effects
,”
Tribol. Lett.
,
28
(
3
), pp.
251
261
.
12.
Wang
,
Q.
, and
Zhu
,
D.
,
2005
, “
Virtual Texturing: Modeling the Performance of Lubricated Contacts of Engineered Surfaces
,”
ASME J. Tribol.
,
127
(
4
), pp.
722
728
.
13.
Fu
,
Y.
,
Ji
,
J.
, and
Bi
,
Q.
,
2012
, “
Hydrodynamic Lubrication of Conformal Contacting Surfaces With Parabolic Grooves
,”
ASME J. Tribol.
,
134
(
1
), pp.
97
104
.
14.
Fu
,
Y.
,
Ji
,
J.
, and
Bi
,
Q.
,
2012
, “
The Influence of Partially Textured Slider With Oriented Parabolic Grooves on the Behavior of Hydrodynamic Lubrication
,”
Tribol. Trans.
,
55
(
2
), pp.
210
217
.
15.
Ji
,
J.
,
Fu
,
Y.
, and
Bi
,
Q.
,
2014
, “
Influence of Geometric Shapes on the Hydrodynamic Lubrication of a Partially Textured Slider With Micro-Grooves
,”
ASME J. Tribol.
,
136
(
4
), pp.
216
223
.
16.
Godlevski
,
V. A.
,
Volkov
,
A. V.
,
Latyshev
,
V. N.
, and
Maurin
,
L. N.
,
1997
, “
The Kinetics of Lubricant Penetration Action During Machining
,”
Lubr. Sci.
,
9
(
2
), pp.
127
140
.
17.
Astakhov
,
V. P.
,
2006
,
Tribology of Metal Cutting
,
Elsevier
,
London, UK
.
18.
Lei
,
S.
,
Devarajan
,
S.
, and
Chang
,
Z.
,
2009
, “
A Study of Micropool Lubricated Cutting Tool in Machining of Mild Steel
,”
J. Mater. Process. Technol.
,
209
(
3
), pp.
1612
1620
.
19.
Fowell
,
M.
,
Pegg
,
I.
,
Olver
,
A. V.
,
Gosman
,
A. D.
, and
Spikes
,
H. A.
,
2006
, “
Entrainment and Inlet Suction: Two Mechanisms of Hydrodynamic Lubrication in Textured Bearings
,”
ASME J. Tribol.
,
129
(
2
), pp.
336
347
.
20.
Iqbal
,
S. A.
,
Mativenga
,
P. T.
, and
Sheikh
,
M. A.
,
2008
, “
A Comparative Study of the Tool–Chip Contact Length in Turning of Two Engineering Alloys for a Wide Range of Cutting Speeds
,”
Int. J. Adv. Manuf. Technol.
,
42
(
1
), pp.
30
40
.
21.
Pinkus
,
O.
, and
Sternlicht
,
B.
,
1961
,
Theory of Hydrodynamic Lubrication
,
McGraw-Hill
,
New York
.
22.
Brizmer
,
V.
,
Kligerman
,
Y.
, and
Etsion
,
I.
,
2003
, “
A Laser Surface Textured Parallel Thrust Bearing
,”
Tribol. Trans.
,
46
(
3
), pp.
397
403
.
23.
Aktürk
,
D. A.
,
Liu
,
P.
,
Cao
,
J.
,
Wang
,
Q. J.
,
Xia
,
Z. C.
,
Talwar
,
R.
,
Grzina
,
D.
, and
Merklein
,
M.
,
2015
, “
Friction Anisotropy of Aluminum 6111-T4 Sheet With Flat and Laser-Textured D2 Tooling
,”
Tribol. Int.
,
81
, pp.
333
340
.
24.
Etsion
,
I.
,
2013
, “
Modeling of Surface Texturing in Hydrodynamic Lubrication
,”
Friction
,
1
(
3
), pp.
195
209
.
25.
Yuan
,
S.
,
Huang
,
W.
, and
Wang
,
X.
,
2011
, “
Orientation Effects of Micro-Grooves on Sliding Surfaces
,”
Tribol. Int.
,
44
(
9
), pp.
1047
1054
.
You do not currently have access to this content.