This paper investigates coupling strategies for finite element modeling (FEM) of thermal elastohydrodynamic lubrication (TEHL) problems. The TEHL problem involves a strong coupling between several physics: solid mechanics, fluid mechanics, and heat transfer. Customarily, this problem is split into two parts (elastohydrodynamic (EHD) and thermal) and the two problems are solved separately while an iterative procedure is established between their respective solutions. This weak coupling strategy involves a loss of information, as each problem is not made intimately aware of the evolution of the other problem's solution during the resolution procedure. This typically leads to slow convergence rates. The current work offers a full coupling strategy for the TEHL problem, i.e., both the EHD and thermal parts are solved simultaneously in a monolithic system. The system of equations is generated from a finite element discretization of the governing field variables: hydrodynamic pressure, solids elastic deformation, and temperature. The full coupling strategy prevents any loss of information during the resolution procedure leading to very fast convergence rates (solution is attained within a few iterations only). The performance of the full coupling strategy is compared to that of different weak coupling strategies. Out of simplicity, only steady-state line contacts are considered in this work. Nevertheless, the proposed methodology, results, and findings are of a general nature and may be extrapolated to circular or elliptical contacts under steady-state or transient conditions.
Skip Nav Destination
Article navigation
July 2017
Research-Article
Coupling Strategies for Finite Element Modeling of Thermal Elastohydrodynamic Lubrication Problems
W. Habchi
W. Habchi
Department of Industrial and
Mechanical Engineering,
Lebanese American University,
Byblos, Lebanon
e-mail: wassim.habchi@lau.edu.lb
Mechanical Engineering,
Lebanese American University,
Byblos, Lebanon
e-mail: wassim.habchi@lau.edu.lb
Search for other works by this author on:
W. Habchi
Department of Industrial and
Mechanical Engineering,
Lebanese American University,
Byblos, Lebanon
e-mail: wassim.habchi@lau.edu.lb
Mechanical Engineering,
Lebanese American University,
Byblos, Lebanon
e-mail: wassim.habchi@lau.edu.lb
Contributed by the Tribology Division of ASME for publication in the JOURNAL OF TRIBOLOGY. Manuscript received May 3, 2016; final manuscript received September 24, 2016; published online April 4, 2017. Assoc. Editor: Xiaolan Ai.
J. Tribol. Jul 2017, 139(4): 041501 (12 pages)
Published Online: April 4, 2017
Article history
Received:
May 3, 2016
Revised:
September 24, 2016
Citation
Habchi, W. (April 4, 2017). "Coupling Strategies for Finite Element Modeling of Thermal Elastohydrodynamic Lubrication Problems." ASME. J. Tribol. July 2017; 139(4): 041501. https://doi.org/10.1115/1.4034956
Download citation file:
Get Email Alerts
A Mixed Zero-Equation and One-Equation Turbulence Model in Fluid-Film Thrust Bearings
J. Tribol (March 2024)
Related Articles
Effects of Anisotropic Slip on the Elastohydrodynamic Lubrication of Circular Contacts
J. Tribol (July,2016)
Quantitative Analysis of Reynolds and Navier–Stokes Based Modeling Approaches for Isothermal Newtonian Elastohydrodynamic Lubrication
J. Tribol (December,2021)
Related Proceedings Papers
Related Chapters
Microstructure Evolution and Physics-Based Modeling
Ultrasonic Welding of Lithium-Ion Batteries
Data Tabulations
Structural Shear Joints: Analyses, Properties and Design for Repeat Loading
Materials
Design and Application of the Worm Gear