A theoretical and computational framework for the analysis of fully transient, thermomechanically coupled, frictional rolling contact based on an arbitrary Lagrangian–Eulerian (ALE) kinematical description is presented. In particular, a computationally efficient methodology for mixed control between the ALE referential velocities and their corresponding driving forces is developed and discussed in depth. Numerical examples involving two-dimensional (2D) cylinder–plate rolling contact are presented, covering a range of transient, thermomechanically coupled rolling contact phenomena, taking place on a broad range of time scales. Here, particular points of emphasis include dynamical effects in the vicinity of the contact region and the time scales on which mechanical and thermal mechanisms operate.

References

1.
Hertz
,
H.
,
1882
, “
Über die berührung fester elastischer körper (On the Contact of Elastic Solids)
,”
J. Reine Angew. Math.
,
92
, pp.
156
171
.
2.
Carter
,
F. W.
,
1926
, “
On the Action of a Locomotive Driving Wheel
,”
Proc. R. Soc. London, Ser. A
,
112
(
760
), pp.
151
157
.
3.
Johnson
,
K. L.
,
1987
,
Contact Mechanics
,
Cambridge University Press
,
Cambridge, UK
.
4.
Bhargava
,
V.
,
Hahn
,
G. T.
, and
Rubin
,
C. A.
,
1985
, “
An Elastic–Plastic Finite Element Model of Rolling Contact, Part 1: Analysis of Single Contacts
,”
ASME J. Appl. Mech.
,
52
(
1
), pp.
67
74
.
5.
Xu
,
B.
, and
Jiang
,
Y.
,
2001
, “
Elastic–Plastic Finite Element Analysis of Partial Slip Rolling Contact
,”
ASME J. Tribol.
,
124
(
1
), pp.
20
26
.
6.
Gao
,
C. H.
,
Huang
,
J. M.
,
Lin
,
X. Z.
, and
Tang
,
X. S.
,
2006
, “
Stress Analysis of Thermal Fatigue Fracture of Brake Disks Based on Thermomechanical Coupling
,”
ASME J. Tribol.
,
129
(
3
), pp.
536
543
.
7.
Wang
,
Z.
,
Jin
,
X.
,
Keer
,
L. M.
, and
Wang
,
Q.
,
2012
, “
A Numerical Approach for Analyzing Three-Dimensional Steady-State Rolling Contact Including Creep Using a Fast Semi-Analytical Method
,”
Tribol. Trans.
,
55
(
4
), pp.
446
457
.
8.
Kalker
,
J. J.
,
1990
,
Three-Dimensional Elastic Bodies in Rolling Contact
(Solid Mechanics and Its Applications),
Kluwer Academic Publishers
, Dordrecht, The Netherlands.
9.
Vollebregt
,
E. A. H.
,
2012
, “
User Guide for CONTACT, Vollebregt & Kalker's Rolling and Sliding Contact Model
,” Version 13.1, VORTech, Delft, The Netherlands, Technical Report No. TR09-03.
10.
Vollebregt
,
E. A. H.
,
Iwnicki
,
S. D.
,
Xie
,
G.
, and
Shackleton
,
P.
,
2012
, “
Assessing the Accuracy of Different Simplified Frictional Rolling Contact Algorithms
,”
Veh. Syst. Dyn.
,
50
(
1
), pp.
1
17
.
11.
Nackenhorst
,
U.
,
2004
, “
The ALE-Formulation of Bodies in Rolling Contact: Theoretical Foundations and Finite Element Approach
,”
Comput. Methods Appl. Mech. Eng.
,
193
, pp.
4299
4322
.
12.
Donéa
,
J.
, and
Huerta
,
A.
,
2003
,
Finite Element Methods for Flow Problems
,
Wiley
, Hoboken, NJ.
13.
Zeid
,
I.
, and
Padovan
,
J.
,
1981
, “
Finite Element Modeling of Rolling Contact
,”
Comput. Struct.
,
14
(
1–2
), pp.
163
170
.
14.
Oden
,
J. T.
, and
Lin
,
T. L.
,
1986
, “
On the General Rolling Contact Problem for Finite Deformations of a Viscoelastic Cylinder
,”
Comput. Methods Appl. Mech. Eng.
,
57
(
3
), pp.
297
367
.
15.
Padovan
,
J.
,
1987
, “
Finite Element Analysis of Steady and Transiently Moving/Rolling Nonlinear Viscoelastic Structure—I. Theory
,”
Comput. Struct.
,
27
(
2
), pp.
249
257
.
16.
Nackenhorst
,
U.
,
1993
, “
On the Finite Element Analysis of Steady State Rolling Contact
,”
Contact Mechanics—Computational Techniques
,
Computational Mechanics Publication
,
Southampton, UK
, pp.
53
60
.
17.
Ziefle
,
M.
, and
Nackenhorst
,
U.
,
2008
, “
Numerical Techniques for Rolling Rubber Wheels: Treatment of Inelastic Material Properties and Frictional Contact
,”
Comput. Mech.
,
42
(
3
), pp.
337
356
.
18.
Suwannachit
,
A.
, and
Nackenhorst
,
U.
,
2013
, “
A Novel Approach for Thermomechanical Analysis of Stationary Rolling Tires Within an ALE-Kinematic Framework
,”
Tire Sci. Technol.
,
41
(
3
), pp.
174
195
.
19.
Draganis
,
A.
,
Larsson
,
F.
, and
Ekberg
,
A.
,
2014
, “
Finite Element Analysis of Transient Thermomechanical Rolling Contact Using an Efficient Arbitrary Lagrangian–Eulerian Description
,”
Comput. Mech.
,
54
(
2
), pp.
389
405
.
20.
Draganis
,
A.
,
Larsson
,
F.
, and
Ekberg
,
A.
,
2015
, “
Finite Element Modelling of Frictional Thermomechanical Rolling/Sliding Contact Using an Arbitrary Lagrangian–Eulerian Formulation
,”
Proc. Inst. Mech. Eng., Part J
,
229
(
7
), pp.
870
880
.
21.
Kalker
,
J. J.
,
1991
, “
Wheel–Rail Rolling Contact Theory
,”
Wear
,
144
, pp.
243
261
.
22.
Schweizer
,
B.
, and
Wauer
,
J.
,
2001
, “
Atomistic Explanation of the Gough–Joule-Effect
,”
Eur. Phys. J. B
,
23
(
3
), pp.
383
390
.
23.
Ottosen
,
N. S.
, and
Ristinmaa
,
M.
,
2005
,
The Mechanics of Constitutive Modeling
,
Elsevier
, Amsterdam, The Netherlands.
24.
Wriggers
,
P.
,
2006
,
Computational Contact Mechanics
,
Springer
, Heidelberg, Germany.
25.
Thompson
,
D. J.
,
1991
, “
Theoretical Modelling of Wheel–Rail Noise Generation
,”
Proc. Inst. Mech. Eng., Part F
,
205
(
2
), pp.
137
149
.
26.
Draganis
,
A.
,
Larsson
,
F.
, and
Ekberg
,
A.
,
2012
, “
Numerical Evaluation of the Transient Response due to Non-Smooth Rolling Contact Using an Arbitrary Lagrangian–Eulerian Formulation
,”
Proc. Inst. Mech. Eng., Part J
,
226
(
1
), pp.
36
45
.
27.
Codina
,
R.
,
Onate
,
E.
, and
Cervera
,
M.
,
1992
, “
The Intrinsic Time for the Streamline Upwind/Petrov–Galerkin Formulation Using Quadratic Elements
,”
Comput. Methods Appl. Mech. Eng.
,
94
(
2
), pp.
239
262
.
28.
Brezzi
,
F.
,
Bristeau
,
M.-O.
,
Franca
,
L. P.
,
Mallet
,
M.
, and
Rogé
,
G.
,
1992
, “
A Relationship Between Stabilized Finite Element Methods and the Galerkin Method With Bubble Functions
,”
Comput. Methods Appl. Mech. Eng.
,
96
(
1
), pp.
117
129
.
29.
Baiocchi
,
C.
,
Brezzi
,
F.
, and
Franca
,
L. P.
,
1993
, “
Virtual Bubbles and Galerkin-Least-Squares Type Methods (Ga.L.S.)
,”
Comput. Methods Appl. Mech. Eng.
,
105
(
1
), pp.
125
141
.
30.
Brezzi
,
F.
,
Marini
,
D.
, and
Russo
,
A.
,
1998
, “
Applications of the Pseudo Residual-Free Bubbles to the Stabilization of Convection-Diffusion Problems
,”
Comput. Methods Appl. Mech. Eng.
,
166
(
1–2
), pp.
51
63
.
31.
Craig
,
R. R.
, and
Kurdila
,
A. J.
,
2006
,
Fundamentals of Structural Dynamics
,
Wiley
, Hoboken, NJ.
You do not currently have access to this content.