In this work, an experimental and numerical study is performed to understand squeal generation and suppression of a pad-on-disk friction system. Several friction material specimens having various orientation degrees of grooves cut on their surfaces are tested. Numerical studies using the methods of complex eigenvalue analysis and dynamic transient analysis are conducted to simulate the experimental process with the finite element (FE) software abaqus. Both experimental and numerical results show that surface modifications of friction material specimens have a significant influence on the squeal instability: cutting a 45 deg or 90 deg groove on the material surface can significantly reduce squeal noise, cutting a 135 deg groove just reduces squeal noise moderately and cutting a 0 deg groove cannot reduce squeal noise. Moreover, the contact pressure distributions for the original surface and modified surfaces are studied to provide a physical explanation of the noise phenomenon. The major finding that friction-induced noise can be reduced by means of suitable structural modifications of the contact interface is expected to have important and much wider applications.

References

1.
Junior
,
M. T.
,
Gerges
,
S. N. Y.
, and
Jordan
,
R.
,
2008
, “
Analysis of Brake Squeal Noise Using the Finite Element Method: A Parametric Study
,”
Appl. Acoust.
,
69
(
2
), pp.
147
162
.
2.
Hochlenert
,
D.
,
Spelsberg-Korspeter
,
G.
, and
Hagedorn
,
P.
,
2010
, “
A Note on Safety-Relevant Vibrations Induced by Brake Squeal
,”
J. Sound Vib.
,
329
(
19
), pp.
3867
3872
.
3.
Ibrahim
,
R. A.
,
1994
, “
Friction-Induced Vibration, Chatter, Squeal, and Chaos—Part II: Dynamics and Modeling
,”
ASME Appl. Mech. Rev.
,
47
(
7
), pp.
227
253
.
4.
Akay
,
A.
,
2002
, “
Acoustics of Friction
,”
J. Acoust. Soc. Am.
,
111
(
4
), pp.
1525
1548
.
5.
Kinkaid
,
N. M.
,
O'Reilly
,
O. M.
, and
Papadopoulos
,
P.
,
2003
, “
Automotive Disc Brake Squeal
,”
J. Sound Vib.
,
267
(
1
), pp.
105
166
.
6.
Ouyang
,
H.
,
Nack
,
W.
,
Yuan
,
Y.
, and
Chen
,
F.
,
2005
, “
Numerical Analysis of Automotive Disc Brake Squeal: A Review
,”
Int. J. Veh. Noise Vib.
,
1
(
3/4
), pp.
207
231
.
7.
Papinniemi
,
A.
,
Lai
,
J. C. S.
,
Zhao
,
J.
, and
Loader
,
L.
,
2002
, “
Brake Squeal: A Literature Review
,”
Appl. Acoust.
,
63
(
4
), pp.
391
400
.
8.
Oberst
,
S.
, and
Lai
,
J.
,
2008
, “
A Critical Review on Brake Squeal and Its Treatment in Practice
,”
INTER-NOISE and NOISE-CON Congress and Conference Proceedings 2008
, Vol.
9
, pp.
670
680
.
9.
Hochlenert
,
D.
,
2009
, “
Nonlinear Stability Analysis of a Disk Brake Model
,”
Nonlinear Dyn.
,
58
(
1/2
), pp.
63
73
.
10.
Butlin
,
T.
, and
Woodhouse
,
J.
,
2009
, “
Friction-Induced Vibration: Should Low-Order Models be Believed?
J. Sound Vib.
,
328
(
1
), pp.
92
108
.
11.
Butlin
,
T.
, and
Woodhouse
,
J.
,
2009
, “
Sensitivity Studies of Friction-Induced Vibration
,”
Int. J. Veh. Des.
,
51
(
1/2
), pp.
238
257
.
12.
Sinou
,
J. J.
,
Dereure
,
O.
,
Mazet
,
G. B.
,
Thouverez
,
F.
, and
Jezequel
,
L.
,
2006
, “
Friction-Induced Vibration for an Aircraft Brake System—Part 1: Experimental Approach and Stability Analysis
,”
Int. J. Mech. Sci.
,
48
(
5
), pp.
536
554
.
13.
Coudeyras
,
N.
,
Sinou
,
J. J.
, and
Nacivet
,
S.
,
2009
, “
A New Treatment for Predicting the Self-Excited Vibrations of Nonlinear Systems With Frictional Interfaces: The Constrained Harmonic Balance Method, With Application to Disc Brake Squeal
,”
J. Sound Vib.
,
319
(
3
), pp.
1175
1199
.
14.
Cantone
,
F.
, and
Massi
,
F.
,
2011
, “
A Numerical Investigation Into the Squeal Instability: Effect of Damping
,”
Mech. Syst. Signal Process.
,
25
(
5
), pp.
1727
1737
.
15.
Ouyang
,
H.
,
Mottershead
,
J. E.
,
Cartmell
,
M. P.
, and
Brookfield
,
D. J.
,
1999
, “
Friction-Induced Vibration of an Elastic Slider on a Vibrating Disc
,”
Int. J. Mech. Sci.
,
41
(
3
), pp.
325
336
.
16.
Duffour
,
P.
, and
Woodhouse
,
J.
,
2004
, “
Instability of Systems With a Frictional Point Contact. Part 1: Basic Modelling
,”
J. Sound Vib.
,
271
(
1/2
), pp.
365
390
.
17.
Duffour
,
P.
, and
Woodhouse
,
J.
,
2004
, “
Instability of Systems With a Frictional Point Contact. Part 2: Model Extensions
,”
J. Sound Vib.
,
271
(
1/2
), pp.
391
410
.
18.
Duffour
,
P.
, and
Woodhouse
,
J.
,
2007
, “
Instability of Systems With a Frictional Point Contact—Part 3: Experimental Tests
,”
J. Sound Vib.
,
304
(
1/2
), pp.
186
200
.
19.
Eriksson
,
M.
,
Bergman
,
F.
, and
Jacobson
,
S.
,
1999
, “
Surface Characterization of Brake Pads After Running Under Silent and Squealing Conditions
,”
Wear
,
232
(
2
), pp.
163
167
.
20.
Bergman
,
F.
,
Eriksson
,
M.
, and
Jacobson
,
S.
,
1999
, “
Influence of Disc Topography on Generation of Brake Squeal
,”
Wear
,
225–229
(
Part 1
), pp.
621
628
.
21.
Eadie
,
D. T.
,
Kalousek
,
J.
, and
Chiddick
,
K. C.
,
2002
, “
The Role of High Positive Friction (HPF) Modifier in the Control of Short Pitch Corrugations and Related Phenomena
,”
Wear
,
253
(
1
), pp.
185
192
.
22.
Sherif
,
H. A.
,
2004
, “
Investigation on Effect of Surface Topography of Pad/Disc Assembly on Squeal Generation
,”
Wear
,
257
(
7
), pp.
687
695
.
23.
Vayssière
,
C.
,
Baillet
,
L.
,
Linck
,
V.
, and
Berthier
,
Y.
,
2005
, “
Influence of Contact Geometry and Third Body on Squeal Initiation: Experimental and Numerical Studies
,”
ASME
Paper No. WTC2005-63839, pp. 363-364.
24.
Hammerström
,
L.
, and
Jacobson
,
S.
,
2006
, “
Surface Modification of Brake Discs to Reduce Squeal Problems
,”
Wear
,
261
(
1
), pp.
53
57
.
25.
Rusli
,
M.
, and
Okuma
,
M.
,
2007
, “
Effect of Surface Topography on Mode-Coupling Model of Dry Contact Sliding Systems
,”
J. Sound Vib.
,
308
(
3
), pp.
721
734
.
26.
Massi
,
F.
,
Berthier
,
Y.
, and
Baillet
,
L.
,
2008
, “
Contact Surface Topography and System Dynamics of Brake Squeal
,”
Wear
,
265
(
11
), pp.
1784
1792
.
27.
Massi
,
F.
,
Baillet
,
L.
, and
Culla
,
A.
,
2009
, “
Structural Modifications for Squeal Noise Reduction: Numerical and Experimental Validation
,”
Int. J. Veh. Des.
,
51
(
1/2
), pp.
168
189
.
28.
Nouby
,
M.
,
Mathivanan
,
D.
, and
Srinivasan
,
K.
,
2009
, “
A Combined Approach of Complex Eigenvalue Analysis and Design of Experiments (DOE) to Study Disc Brake Squeal
,”
Int. J. Eng. Sci. Technol.
,
1
(
1
), pp.
254
271
.
29.
Oberst
,
S.
, and
Lai
,
J. C. S.
,
2009
, “
Numerical Prediction of Brake Squeal Propensity Using Acoustic Power Calculation
,” ACOUSTICS 2009, pp.
111
118
.
30.
Oberst
,
S.
, and
Lai
,
J. C. S.
,
2011
, “
Statistical Analysis of Brake Squeal Noise
,”
J. Sound Vib.
,
330
(
12
), pp.
2978
2994
.
31.
Wagner
,
A.
,
Spelsberg-Korspeter
,
G.
, and
Hagedorn
,
P.
,
2014
, “
Structural Optimization of an Asymmetric Automotive Brake Disc With Cooling Channels to Avoid Squeal
,”
J. Sound Vib.
,
333
(
7
), pp.
1888
1898
.
32.
AbdRahman
,
M. R.
,
Vernin
,
G.
, and
AbuBakar
,
A. R.
,
2014
, “
Preventing Drum Brake Squeal Through Lining Modifications
,”
Appl. Mech. Mater.
,
471
, pp.
20
24
.
33.
Kung
,
S. W.
,
Dunlap
,
K. B.
, and
Ballinger
,
R. S.
,
2000
, “
Complex Eigenvalue Analysis for Reducing Low Frequency Brake Squeal
,”
SAE
Technical Paper No. 2000-01-0444.
34.
Bajer
,
A.
,
Belsky
,
V.
, and
Zeng
,
L.
,
2003
, “
Combining a Nonlinear Static Analysis and Complex Eigenvalue Extraction in Brake Squeal Simulation
,”
SAE
Technical Paper No. 2003-01-3349.
35.
Kang
,
J.
,
Krousgrill
,
C. M.
, and
Sadeghi
,
F.
,
2009
, “
Analytical Formulation of Mode-Coupling Instability in Disc–Pad Coupled System
,”
Int. J. Mech. Sci.
,
51
(
1
), pp.
52
63
.
36.
Kang
,
J.
,
2009
, “
Squeal Analysis of Gyroscopic Disc Brake System Based on Finite Element Method
,”
Int. J. Mech. Sci.
,
51
(
4
), pp.
284
294
.
37.
Meziane
,
A.
,
Baillet
,
L.
, and
Laulagnet
,
B.
,
2010
, “
Experimental and Numerical Investigation of Friction-Induced Vibration of a Beam-on-Beam in Contact With Friction
,”
Appl. Acoust.
,
71
(
9
), pp.
843
853
.
38.
Weiss
,
C.
,
Gdaniec
,
P.
,
Hoffmann
,
N. P.
,
Hothan
,
A.
,
Huber
,
G.
, and
Morlock
,
M. M.
,
2010
, “
Squeak in Hip Endoprosthesis Systems: An Experimental Study and a Numerical Technique to Analyze Design Variants
,”
Med. Eng. Phys.
,
32
(
6
), pp.
604
609
.
39.
Wang
,
D. W.
,
Mo
,
J. L.
,
Ouyang
,
H.
,
Chen
,
G. X.
,
Zhu
,
M. H.
, and
Zhou
,
Z. R.
,
2014
, “
Experimental and Numerical Studies of Friction-Induced Vibration and Noise and the Effects of Groove-Textured Surfaces
,”
Mech. Syst. Signal Process.
,
46
(
2
), pp.
191
208
.
40.
Ouyang
,
H.
,
Cao
,
Q.
,
Mottershead
,
J. E.
, and
Treyde
,
T.
,
2003
, “
Vibration and Squeal of a Disc Brake: Modelling and Experimental Results
,”
Proc. Inst. Mech. Eng., Part D
,
217
(
10
), pp.
867
875
.
41.
Fan
,
N.
,
Chen
,
G. X.
, and
Qian
,
L. M.
,
2011
, “
Analysis of Squeaking on Ceramic Hip Endoprosthesis Using the Complex Eigenvalue Method
,”
Wear
,
271
(
9
), pp.
2305
2312
.
42.
Wang
,
D. W.
,
Mo
,
J. L.
,
Wang
,
Z. G.
,
Chen
,
G. X.
,
Ouyang
,
H.
, and
Zhou
,
Z. R.
,
2013
, “
Numerical Study of Friction-Induced Vibration and Noise on Groove-Textured Surface
,”
Tribol. Int.
,
64
, pp.
1
7
.
43.
Chargin
,
M. L.
,
Dunne
,
L. W.
, and
Herting
,
D. N.
,
1997
, “
Nonlinear Dynamics of Brake Squeal
,”
Finite Elem. Anal. Des.
,
28
(
1
), pp.
69
82
.
44.
AbuBakar
,
A. R.
, and
Ouyang
,
H.
,
2006
, “
Complex Eigenvalue Analysis and Dynamic Transient Analysis in Predicting Disc Brake Squeal
,”
Int. J. Veh. Noise Vib.
,
2
(
2
), pp.
143
155
.
45.
Lin
,
S. C.
,
Guan
,
C. C.
,
AbuBakar
,
A. R.
,
Jamaluddin
,
M. R.
,
WanHarujan
,
W. M. M.
, and
AbdGhani
,
B.
,
2011
, “
Disc Brake Squeal Suppression Through Chamfered and Slotted Pad
,”
Int. J. Veh. Struct. Syst.
,
3
(
1
), pp.
28
35
.
46.
Massi
,
F.
,
Baillet
,
L.
,
Giannini
,
O.
, and
Sestieri
,
A.
,
2007
, “
Brake Squeal: Linear and Nonlinear Numerical Approaches
,”
Mech. Syst. Signal Process.
,
21
(
6
), pp.
2374
2393
.
47.
Rice
,
J. R.
,
1992
, “
Fault Stress States, Pore Pressure Distributions, and the Weakness of the San Andreas Fault
,”
Int. Geophys.
,
51
, pp.
475
503
.
48.
Bajer
,
A.
,
Belsky
,
V.
, and
Kung
,
S.
,
2004
, “
The Influence of Friction-Induced Damping and Nonlinear Effects on Brake Squeal Analysis
,”
SAE
Technical Paper No. 2004-01-2794.
49.
AbuBakar
,
A. R.
,
Ouyang
,
H.
,
James
,
S.
, and
Li
,
L.
,
2008
, “
Finite Element Analysis of Wear and Its Effect on Squeal Generation
,”
Proc. Inst. Mech. Eng., Part D
,
222
(
7
), pp.
1153
1165
.
You do not currently have access to this content.