The objective of this study is to construct a continuous mathematical model that describes the frictionless contact between a nominally flat (rough) viscoelastic punch and a perfectly rigid foundation. The material’s behavior is modeled by assuming a complex viscoelastic constitutive law, the standard linear solid (SLS) law. The model aims at studying the normal compliance (approach) of the punch surface, which will be assumed to be quasistatic, as a function of the applied creep load. The roughness of the punch surface is assumed to be fractal in nature. The Cantor set theory is utilized to model the roughness of the punch surface. An asymptotic power law is obtained, which associates the creep force applied and the approach of the fractal punch surface. This law is only valid if the approach is of the size of the surface roughness. The proposed model admits an analytical solution for the case when the deformation is linear viscoelastic. The modified analytical model shows a good agreement with experimental results available in the literature.

1.
Johnson
,
K.
, 1985,
Contact Mechanics
,
Cambridge University Press
,
Cambridge
.
2.
Radchik
,
V.
,
Ben-Nissan
,
B.
, and
Müller
,
W.
, 2002, “
Theoretical Modeling of Surface Asperity Depression into an Elastic Foundation Under Static Loading
,”
ASME J. Tribol.
0742-4787,
124
, pp.
852
856
.
3.
Abuzeid
,
O.
, 2004, “
A Linear Viscoelastic Creep-Contact Model of a Flat Fractal Surface: Kelvin-Voigt Medium
,”
Ind. Lubr. Tribol.
0036-8792,
56
(
6
), pp.
334
340
.
4.
Greenwood
,
J.
, and
Williamson
,
J.
, 1966, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. London, Ser. A
1364-5021,
295
, pp.
300
319
.
5.
Handzel-Powierza
,
Z.
,
Klimczak
,
T.
, and
Polijaniuk
,
A.
, 1992, “
On the Experimental Verification of The Greenwood-Williamson Model for the Contact of Rough Surfaces
,”
Wear
0043-1648,
154
, pp.
115
124
.
6.
Wu
,
J.
, 2001, “
The Properties of Asperities of Real Surfaces
,”
ASME J. Tribol.
0742-4787,
123
, pp.
872
883
.
7.
Bakolas
,
V.
, 2003, “
Numerical Generation of Arbitrarily Oriented Non-Gaussian Three-Dimensional Rough Surfaces
,”
Wear
0043-1648,
254
, pp.
546
554
.
8.
Bucher
,
F.
,
Knothe
,
K.
, and
Lünenschloß
,
A.
, 2004, “
The Normal Contact of Rough Surfaces With Fine Discretization
,”
Arch. Appl. Mech.
0939-1533,
73
, pp.
561
567
.
9.
Abdo
,
J.
, and
Farhangb
,
K.
, 2005, “
Elastic-Plastic Contact Model for Rough Surfaces Based on Plastic Asperity Concept
,”
Int. J. Non-Linear Mech.
0020-7462,
40
, pp.
495
506
.
10.
Willner
,
K.
, 1995, “
Ein statistisches Modell für den Kontakt metallischer Körper
,” Ph.D. thesis, Institut für Mechanik, Universität der Bundeswehr Hamburg.
11.
Thomas
,
T.
, 1982, “
Defining the Microtopography of Surfaces in Thermal Contact
,”
Wear
0043-1648,
79
, pp.
73
82
.
12.
Borodich
,
F.
, and
Mosolov
,
A.
, 1992, “
Fractal Roughness in Contact Problems
,”
J. Appl. Math. Mech.
0021-8928,
56
, pp.
681
690
.
13.
Plesha
,
M.
, and
Ni
,
D.
, 2001, “
Scaling of Geological Discontinuity Normal Load-Deformation Response Using Fractal Geometry
,”
Int. J. Numer. Analyt. Meth. Geomech.
0363-9061,
25
, pp.
741
756
.
14.
Warren
,
T.
, and
Krajcinovic
,
D.
, 1995, “
Fractal Models of Elastic-Perfectly Plastic Contact of Rough Surfaces Based on Cantor Set
,”
Int. J. Solids Struct.
0020-7683,
32
, pp.
2907
2922
.
15.
Warren
,
T.
,
Majumdar
,
A.
, and
Krajcinovic
,
D.
, 1996, “
A Fractal Model for the Rigid-Perfectly Plastic Contact of Rough Surfaces
,”
J. Appl. Mech.
0021-8936,
63
, pp.
47
54
.
16.
Abuzeid
,
O.
, 2003, “
Linear Viscoelastic Creep Model for the Contact of Nominal Flat Surfaces Based on Fractal Geometry: Maxwell Type Medium
,”
Dirasat-Engineering Science
,
30
(
1
), pp.
22
36
.
17.
Abuzeid
,
O.
, 2003, “
A Linear Thermo-Viscoelastic Creep Model for the Contact of Nominal Flat Surfaces Based on Fractal Geometry: Kelvin-Voigt Medium
,”
J. Qual. Maint. Eng.
1355-2511,
9
(
2
), pp.
202
216
.
18.
Fernandez
,
J.
, and
Sofonea
,
M.
, 2004, “
Numerical Analysis of a Frictionless Viscoelastic Contact Problem With Normal Damped Response
,”
Comput. Math. Appl.
0898-1221,
47
, pp.
549
568
.
19.
Lee
,
E.
, and
Radok
,
J.
, 1960, “
The Contact Problems for Viscoelastic Bodies
,”
J. Appl. Mech.
0021-8936,
27
, pp.
438
444
.
20.
Ting
,
T.
, 1968, “
Contact Problems in The Linear Theory of Viscoelasticity
,”
J. Appl. Mech.
0021-8936,
35
, pp.
248
254
.
21.
Jaffar
,
M.
, 1989, “
Asymptotic Behavior of Thin Elastic Layer Bonded and Unbonded to a Rigid Foundation
,”
Int. J. Mech. Sci.
0020-7403,
31
, pp.
229
235
.
22.
Nghieh
,
G.
,
Rahnejat
,
H.
, and
Jin
,
Z.
, 1997, “
Contact Mechanics of Viscoelastic Layered Surface
,”
Contact Mechanics III
,
M.
Aliabadi
and
A.
Samartin
, eds.,
WIT Press
, UK, pp.
59
68
.
23.
Wahl
,
V.
,
Stempnowski
,
S.
, and
Unertl
,
W.
, 1998, “
Viscoelastic Effects in Nanometer-Scale Contacts Under Shear
,”
Tribol. Lett.
1023-8883,
5
, pp.
103
107
.
24.
Unertl
,
W.
, 2000, “
Creep Effects in Nanometer-Scale Contacts to Linear Viscoelastic Materials
,”
Microstructure and Microtribology of Polymer Surfaces
,
V.
Tsukruk
and
K.
Wahl
, eds.,
American Chemical Society
,
Washington
, pp.
66
82
.
25.
Feder
,
J.
, 1989,
Fractals
,
Plenum
,
New York
, pp.
1
30
and pp.
62
65
.
26.
Mandelbrot
,
B.
, 1982,
The Fractal Geometry of Nature
,
Freeman & Company
,
NewYork
.
27.
Voss
,
R.
, 1988, “
Fractals in Nature: From Characterization to Simulation
,”
The Science of Fractal Images
,
H.
Peitgen
and
D.
Saupe
, eds.,
Springer
, New York, pp.
21
70
.
28.
Borodich
,
F.
, 2006, “
Fractals and Surface Roughness in EHL
,”
IUTAM Symposium on Elasto-Hydrodynamics and Micro-Elastohydrodynamics
,
R.
Snidle
and
H.
Evans
, eds., pp.
397
408
.
29.
Zhao
,
Y.
, and
Chang
,
L.
, 2001, “
A Model of Asperity Interactions in Elastic-Plastic Contact of Rough Surfaces
,”
ASME J. Tribol.
0742-4787,
123
, pp.
857
864
.
30.
Signorini
,
A.
, 1933, “
Sopra Alcune Questioni di Elastostatica
,”
Atti della Societa Italiana per il Progresso delle Sceienze
,
XXI
(
2
), Roma, pp.
143
148
.
31.
Radok
,
J.
, 1957, “
Viscoelastic Stress Analysis
,”
Q. Appl. Math.
0033-569X,
15
, pp.
198
202
.
32.
Shames
,
I.
, and
Cozzarelli
,
F.
, 1992,
Elastic and Inelastic Stress Analysis
,
Prentice-Hall
,
New Jersey
.
33.
Prudnikov
,
A.
,
Brychkov
,
Y.
, and
Marichev
,
O.
, 1992,
Inverse Laplace Transforms
,
Gordon and Breach
,
New York
, Vol.
5
.
34.
Jain
,
V.
, 1980, “
Some Expansions Involving Basic Hypergeometric Functions of Two Variables
,”
Pac. J. Math.
0030-8730,
91
(
2
), pp.
349
361
.
35.
Nowacki
,
W.
, 1962,
Thermoelasticity
,
Pergamon
,
London
, pp.
547
574
.
You do not currently have access to this content.