Most contact analyses assume that the surface height distributions follow a single modal distribution. However, there are many surfaces with multi-modal roughness distributions, e.g., magnetic particulate tape, super alloys with precipitates, and hydrophobic leaves. In this study, an algorithm is developed to generate bimodal surfaces by superimposing particles with radii following a Gaussian distribution on a Gaussian rough surface. Two different cases are presented to produce composite surfaces with particles; the first case is particles sitting on a surface and the other case is particles sitting on the mean plane of a surface. Statistical analysis is carried out for the generated bimodal surfaces to study the effect of the bimodal roughness distributions on the surface’s probability density function shapes. Contact analysis is also conducted to identify optimum bimodal roughness distributions for low friction, stiction, and wear. It is assumed that particles and matrix have uniform elastic properties as it is a reasonable assumption in some applications such as magnetic tapes. Variation of fractional contact area, maximum contact pressure, and relative meniscus force as functions of relative mean radius and relative standard deviation of particles are studied for different values of particle densities. It is found that bimodal surfaces with lower particle density are beneficial to low friction and stiction, whereas those with higher particle density are beneficial to low wear. Relative mean radii of particles of 2–3 in bimodal surfaces with particles sitting on surface and 3–5 in bimodal surfaces with particles sitting on the mean plane of surface are desirable for low friction, stiction, and wear.

1.
Greenwood
,
J. A.
, and
Williamson
,
J. B. P.
, 1966, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. London, Ser. A
1364-5021,
295
, pp.
300
319
.
2.
Onions
,
R. A.
, and
Archard
,
J. F.
, 1973, “
The Contact of Surfaces Having a Random Surface Structure
,”
J. Phys. D
0022-3727,
6
, pp.
289
304
.
3.
Lai
,
W. T.
, and
Cheng
,
H. S.
, 1985, “
Computer Simulation of Elastic Rough Contact
,”
ASLE Trans.
0569-8197,
28
, pp.
172
180
.
4.
West
,
M. N.
, and
Sayles
,
R. S.
, 1986, “
A Numerical Model for the Elastic Frictionless Contact of Real Rough Surfaces
,”
ASME J. Tribol.
0742-4787,
108
, pp.
314
320
.
5.
McCool
,
J. I.
, 1986, “
Comparison of Models for the Contact of Rough Surfaces
,”
Wear
0043-1648,
107
, pp.
37
60
.
6.
Cole
,
S. J.
, and
Sayles
,
R. S.
, 1992, “
A Numerical Model for the Contact of Layered Elastic Bodies With Real Rough Surfaces
,”
ASME J. Tribol.
0742-4787,
114
, pp.
334
340
.
7.
Komvopoulos
,
K.
, and
Choi
,
D. H.
, 1992, “
Elastic Finite Element Analysis of Multi Asperity Contacts
,”
ASME J. Tribol.
0742-4787,
114
, pp.
823
831
.
8.
Ren
,
N.
, and
Lee
,
S. C.
, 1994, “
The Effects of Surface Roughness and Topography on the Contact Behavior of Elastic Bodies
,”
ASME J. Tribol.
0742-4787,
116
, pp.
804
810
.
9.
Kotwal
,
C. A.
, and
Bhushan
,
B.
, 1996, “
Contact Analysis of non-Gaussian Surfaces for Minimum Static and Kinetic Friction and Wear
,”
Tribol. Trans.
1040-2004,
39
, pp.
890
898
.
10.
Stanely
,
H. M.
, and
Kato
,
T.
, 1997, “
A FFT-Based Method for Rough Surface Contact
,”
ASME J. Tribol.
0742-4787,
119
, pp.
481
485
.
11.
Chilamakuri
,
S. K.
, and
Bhushan
,
B.
, 1998, “
Contact Analysis of non-Gaussian Random Surfaces
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
1350-6501,
212 J
, pp.
19
32
.
12.
Bhushan
,
B.
, 1998, “
Contact Mechanics of Rough Surfaces in Tribology: Multiple Asperity Contact
,”
Tribol. Lett.
1023-8883,
4
, pp.
1
35
.
13.
Polycarpou
,
A.
, and
Etsion
,
I.
, 1999, “
Analytical Approximations in Modeling Contacting Rough Surfaces
,”
ASME J. Tribol.
0742-4787,
121
, pp.
234
239
.
14.
Zhao
,
D. Y.
,
Maietta
,
M.
, and
Chang
,
L.
, 2000, “
An Asperity Micro-Contact Model Incorporating the Transition From Elastic Deformation to Fully Plastic Flow
,”
ASME J. Tribol.
0742-4787,
122
, pp.
86
93
.
15.
Bhushan
,
B.
, and
Peng
,
W.
, 2002, “
Contact Mechanics of Multilayered Rough Surfaces
,”
Appl. Mech. Rev.
0003-6900,
55
, pp.
435
480
.
16.
Liu
,
S.
, and
Wang
,
Q.
, 2002, “
Studying Contact Stress Fields Caused by Surface Tractions With a Discrete Convolution and Fast Fourier Transform Algorithm
,”
ASME J. Tribol.
0742-4787,
124
, pp.
36
45
.
17.
Jeng
,
Y. R.
, and
Peng
,
S. R.
, 2006, “
Elastic-Plastic Contact Behavior Considering Asperity Interactions for Surfaces With Various Height Distributions
,”
ASME J. Tribol.
0742-4787,
128
, pp.
246
251
.
18.
Bhushan
,
B.
, 1996,
Tribology and Mechanics of Magnetic Storage Devices
, 2nd ed.,
Springer-Verlag
, New York.
19.
Bhushan
,
B.
, 2000,
Mechanics and Reliability of Flexible Magnetic Media
, 2nd ed.,
Springer-Verlag
, New York.
20.
Bhushan
,
B.
, 1999,
Handbook of Micro/Nano Tribology
, 2nd ed.,
CRC
, Boca Raton, FL.
21.
Göken
,
M.
, and
Vehoff
,
H.
, 1996, “
Quantitative Metallography of Structural Materials With the Atomic Force Microscope
,”
Scr. Mater.
1359-6462,
35
, pp.
983
989
.
22.
Nosonovsky
,
M.
, and
Bhushan
,
B.
, 2005, “
Roughness Optimization for Biomimetic Superhydrophobic Surfaces
,”
Microsyst. Technol.
0946-7076,
11
, pp.
535
549
.
23.
Burton
,
Z.
, and
Bhushan
,
B.
, 2005, “
Hydrophobicity, Adhesion, and Friction Properties of Nanopatterned Polymers and Scale Dependence for Micro- and Nanoelectromechanical System
,”
Nano Lett.
1530-6984,
5
(
8
), pp.
1607
1613
.
24.
Luo
,
J.
, and
Dornfeld
,
D. A.
, 2001, “
Material Removal Mechanism in Chemical Mechanical Polishing
,”
IEEE Trans. Semicond. Manuf.
0894-6507,
14
, pp.
112
133
.
25.
Zhao
,
Y.
, and
Chang
,
L.
, 2002, “
A Micro-Contact and Wear Model for Chemical-Mechanical Polishing of Silicon Wafers
,”
Wear
0043-1648,
252
, pp.
220
226
.
26.
Seok
,
J.
,
Sukam
,
C. P.
,
Kim
,
A. T.
,
Tichy
,
J. A.
, and
Cale
,
T. S.
, 2003, “
Multiscale Material Removal Modeling of Chemical Mechanical Polishing
,”
Wear
0043-1648,
254
, pp.
307
320
.
27.
Jeng
,
Y. R.
, and
Huang
,
P. Y.
, 2005, “
A Material Removal Rate Model Considering Interfacial Micro-Contact Wear Behavior for Chemical Mechanical Polishing
,”
ASME J. Tribol.
0742-4787,
127
, pp.
190
197
.
28.
De Pellegrin
,
D. V.
, and
Stachowiak
,
G. W.
, 2004, “
Evaluating the Role of Particle Distribution and Shape in Two-Body Abrasion by Statistical Simulation
,”
Tribol. Int.
0301-679X,
37
, pp.
255
270
.
29.
Chen
,
X.
, and
Rowe
,
W. B.
, 1996, “
Analysis and Simulation of the Grinding Process, Part I: Generation of the Grinding Wheel Surface
,”
Int. J. Mach. Tools Manuf.
0890-6955,
36
(
8
), pp.
871
882
.
30.
Borbely
,
A.
,
Biermann
,
H.
, and
Hartmann
,
O.
, 2001, “
FE Investigation of the Effect of Particle Distribution on the Uniaxial Stress-Strain Behavior of Particulate Reinforced Metal-Matrix Composites
,”
Mater. Sci. Eng., A
0921-5093,
313
, pp.
34
45
.
31.
Boselli
,
J.
,
Pitcher
,
P. D.
,
Gregson
,
P. J.
, and
Sinclair
,
I.
, 2001, “
Numerical Modeling of Particle Distribution Effects on Fatigue in Al-SiCp Composites
,”
Mater. Sci. Eng., A
0921-5093,
300
, pp.
113
124
.
32.
Peng
,
W.
, and
Bhushan
,
B.
, 2000, “
Modeling of Surfaces With a Bimodal Roughness Distribution
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
1350-6501,
214 J
, pp.
459
470
.
33.
Hu
,
Y. Z.
, and
Tonder
,
K.
, 1992, “
Simulation of 3-D Random Surface by 2-D Digital Filter and Fourier Analysis
,”
Int. J. Mach. Tools Manuf.
0890-6955,
32
, pp.
82
90
.
34.
Tian
,
X.
, and
Bhushan
,
B.
, 1996, “
A Numerical Three-Dimensional Model for the Contact of Rough Surfaces by Variational Principle
,”
ASME J. Tribol.
0742-4787,
118
, pp.
33
41
.
35.
Bhushan
,
B.
, 2002,
Introduction to Tribology
,
Wiley
, New York.
36.
Boussinesq
,
J.
, 1885,
Application des Potentials a l’Etude de l’Equilibre et du Mouvement des Solides Elastiques
,
Gauthier-Villars
, Paris, France.
37.
Gao
,
C.
,
Tian
,
X.
, and
Bhushan
,
B.
, 1995, “
A Meniscus Model for Optimization of Texturing and Liquid Lubrication of Magnetic Thin-Film Rigid Disks
,”
Tribol. Trans.
1040-2004,
38
, pp.
201
212
.
38.
Tian
,
X.
, and
Bhushan
,
B.
, 1996, “
The Micro-Meniscus Effect of a Thin Liquid Film on the Static Friction of Rough Surface Contact
,”
J. Phys. D
0022-3727,
29
, pp.
163
178
.
39.
Adamson
,
A. W.
, 1990,
Physical Chemistry of Surfaces
, 5th ed.,
Wiley
, New York.
You do not currently have access to this content.