An elastohydrodynamic (EHD) analysis is performed for two misaligned hybrid journal bearings working on the same shaft. To predict the correct system behavior we are forced to consider the interdependence between the two bearings and the shaft. The presented algorithm is based on finite element discretization. It allows accurate analysis of film breakdown and reforming, during the functioning of actual devices. Active (full film) and inactive (cavitated) film zones are determined for nonstationary running conditions. Using a convenient iterative solution procedure, the converged solutions for lubricant flow and elastic deformation fields are obtained. The analysis of thickness, pressure, power loss, and elastic deformation of both bearings and shaft surface allows the optimization of any parameter for the two hybrid bearings.

1.
Fantino
,
B.
,
Fre^ne
,
J.
, and
Duparquet
,
J.
,
1979
, “
Elastic Connecting-rod Bearing With Piezoviscous Lubricant: Analysis of the Steady State Characteristics
,”
ASME J. Lubr. Technol.
,
101
, pp.
190
220
.
2.
Fantino, B., 1981, “Influence des de´fauts de forme et des de´formations e´lastique des surfaces en lubrification hydrodynamique sous charges statiques et dynamiques,” The`se No. 1-DE-8122, INSA de Lyon, France.
3.
Fantino
,
B.
, and
Fre^ne
,
J.
,
1985
, “
Comparison of Dynamic Behavior of Elastic Connecting-Rod Bearing in Both Petrol and Diesel Engines
,”
ASME J. Tribol.
,
107
, pp.
87
91
.
4.
Oh
,
K. P.
, and
Goenka
,
P. K.
,
1985
, “
The Elastohydrodynamic Solution of Journal Bearing Under Dynamic Loading
ASME J. Tribol.
,
107
, pp.
389
395
.
5.
McIvor
,
J. D. C.
, and
Fenner
,
D. N.
,
1989
, “
Finite Element Analysis of Dynamically Loaded Flexible Journal Bearings: A Fast Newton–Raphson Method
,”
ASME J. Tribol.
,
111
, pp.
597
604
.
6.
Bonneau
,
D.
,
Guines
,
D.
,
Fre^ne
,
J.
, and
Toplosky
,
J.
,
1995
, “
EHD Analysis, Including Structural Inertia Effects and Mass-Conserving Cavitation Model
,”
ASME J. Tribol.
,
117
, pp.
403
410
.
7.
Boedo
,
S.
, and
Booker
,
J. F.
,
1997
, “
Surface Roughness and Structural Inertia in a Mode-Based Mass-Conserving Elastohydrodynamic Lubrication Model
,”
ASME J. Tribol.
,
119
, pp.
449
455
.
8.
Booker
,
J. F.
, and
Boedo
,
S.
,
2001
, “
Finite Element Analysis of Elastic Engine Bearing Lubrication: Theory
,”
Rev. Eur. E´le´ments Finis
,
10
, pp.
705
724
.
9.
Bonneau, D., Chomat, A. M., Garnier, T., and Grente, C., 2000, “3D EHD Lubrication Optimised Design of a Cylinder in Line Automotive Engine Crankshaft,” 26th Leeds-Lyon Symposium of Tribology, pp. 391–398.
10.
Chomat
,
A. M.
, and
Bonneau
,
D.
,
2001
, “
Mode´lisation par ma Me´thode des E´le´ments Finis de la Lubrification EHD des Paliers de Vilbrequin des Moteurs Thermiques
,”
Rev. Eur. E´le´ments Finis
,
10
, pp.
791
814
.
11.
Garnier
,
T.
,
Bonneau
,
D.
, and
Grente
,
C.
,
1999
, “
Three-Dimensional EHD Behavior of the Engine Block/Crankshaft Assembly for a Four Cylinder Inline Automotive Engine
,”
ASME J. Tribol.
,
121
, pp.
721
729
.
12.
Bonneau
,
D.
, and
Hajjam
,
M.
,
2001
, “
Mode´lisation de la Rupture et de la Reformation des Films Lubrifiants Dans les Contacts E´lastohydrodynamiques
,”
Rev. Eur. E´le´ments Finis
,
10
, pp.
679
704
.
13.
McIvor
,
J. D. C.
, and
Fenner
,
D. N.
,
1988
, “
An Evaluation of Eight-Node Quadrilateral Elements for the Analysis of Dynamically Loaded Hydrodynamic Journal Bearing
,”
Proc. Inst. Mech. Eng., Part C: Mech. Eng. Sci.
,
202
, No
C2
, pp.
95
101
.
14.
Zienkiewicz, O. C., 1977, The Finite Element Method, Mc Graw-Hill Partc: Mech. Eng. Sci., London.
You do not currently have access to this content.