A thermomechanical analysis is presented for a semi-infinite elastic solid sliding against a rigid, rough surface characterized by fractal geometry. A piecewise-linear distribution of the contact pressure was obtained by superposition of overlapping triangular pressure elements. The normal surface displacements due to the effects of contact pressure, shear traction, and thermoelastic distortion caused by frictional heating are incorporated in the influence coefficients of the matrix-inversion method. Results for a smooth, cylindrical surface sliding over a semi-infinite elastic solid demonstrate the accuracy of the analysis and provide reference for comparison with results obtained with the rough (fractal) surface. The effects of surface topography and interaction between neighboring asperity microcontacts on the surface and subsurface temperature rise and stress field of the elastic semi-infinite solid are discussed in the context of numerical results. The significance of frictional heating on the contact pressure, temperature rise, and stresses is interpreted in terms of the Peclet number and topography (fractal) parameters. The results provide insight into the likelihood for cracking and plastic flow at the surface due to the combined effects of mechanical and thermal surface tractions.

1.
Blok, H., 1937, “Theoretical Study of Temperature Rise at Surfaces of Actual Contact Under Oiliness Lubricating Conditions,” Proceedings General Discussion on Lubrication and Lubricants, Inst. Mech. Eng. (London), Vol. 2, pp. 222–235.
2.
Jaeger
,
J. C.
,
1942
, “
Moving Sources of Heat and the Temperature at Sliding Contacts
,”
Proc. R. Soc. NSW
,
56
, pp.
203
224
.
3.
Tian
,
X. F.
, and
Kennedy
,
F. E.
,
1994
, “
Maximum and Average Flash Temperatures in Sliding Contacts
,”
ASME J. Tribol.
,
116
, pp.
167
174
.
4.
Ju
,
F. D.
, and
Huang
,
J. H.
,
1982
, “
Heat Checking in the Contact Zone of a Bearing Seal (A Two-Dimensional Model of a Single Moving Asperity)
,”
Wear
,
79
, pp.
107
118
.
5.
Huang
,
J. H.
, and
Ju
,
F. D.
,
1985
, “
Thermomechanical Cracking Due to Moving Frictional Loads
,”
Wear
,
102
, pp.
81
104
.
6.
Ju
,
F. D.
, and
Liu
,
J. C.
,
1988
, “
Effect of Peclet Number in Thermo-Mechanical Cracking Due to High-Speed Friction Load
,”
ASME J. Tribol.
,
110
, pp.
217
221
.
7.
Leroy
,
J. M.
,
Floquet
,
A.
, and
Villechaise
,
B.
,
1989
, “
Thermomechanical Behavior of Multilayered Media: Theory
,”
ASME J. Tribol.
,
111
, pp.
538
544
.
8.
Bryant
,
M. D.
,
1988
, “
Thermoelastic Solutions for Thermal Distributions Moving Over Half-Space Surfaces and Application to the Moving Heat Source
,”
ASME J. Appl. Mech.
,
55
, pp.
87
92
.
9.
Ju
,
Y.
, and
Farris
,
T. N.
,
1997
, “
FFT Thermoelastic Solutions for Moving Heat Sources
,”
ASME J. Tribol.
,
119
, pp.
156
162
.
10.
Liu
,
S.
, and
Wang
,
Q.
,
2003
, “
Transient Thermoelastic Stress Fields in a Half-Space
,”
ASME J. Tribol.
,
125
, pp.
33
43
.
11.
Gupta
,
V.
,
Bastias
,
P.
,
Hahn
,
G. T.
, and
Rubin
,
C. A.
,
1993
, “
Elastoplastic Finite-Element Analysis of 2-D Rolling-Plus-Sliding Contact With Temperature-Dependent Bearing Steel Material Properties
,”
Wear
,
169
, pp.
251
256
.
12.
Cho
,
S.-S.
, and
Komvopoulos
,
K.
,
1997
, “
Thermoelastic Finite Element Analysis of Subsurface Cracking Due to Sliding Surface Traction
,”
ASME J. Eng. Mater. Technol.
,
119
, pp.
71
78
.
13.
Ye
,
N.
, and
Komvopoulos
,
K.
,
2003
, “
Three-Dimensional Finite Element Analysis of Elastic-Plastic Layered Media Under Thermomechanical Surface Loading
,”
ASME J. Tribol.
,
125
, pp.
52
59
.
14.
Gong
,
Z.-Q.
, and
Komvopoulos
,
K.
,
2004
, “
Mechanical and Thermomechanical Elastic-Plastic Contact Analysis of Layered Media With Patterned Surfaces
,”
ASME J. Tribol.
,
126
, pp.
9
17
.
15.
Azarkhin
,
A.
, and
Barber
,
J. R.
,
1986
, “
Thermoelastic Instability for the Transient Contact Problem of Two Sliding Half-Planes
,”
ASME J. Appl. Mech.
,
53
, pp.
565
572
.
16.
Lee
,
K.
, and
Barber
,
J. R.
,
1993
, “
Frictionally-Excited Thermoelastic Instability in Automotive Disk Brakes
,”
ASME J. Tribol.
,
115
, pp.
607
614
.
17.
Wang
,
Q.
, and
Liu
,
G.
,
1999
, “
A Thermoelastic Asperity Contact Model Considering Steady-State Heat Transfer
,”
Tribol. Trans.
,
42
, pp.
763
770
.
18.
Liu
,
G.
, and
Wang
,
Q.
,
2000
, “
Thermoelastic Asperity Contacts, Frictional Shear, and Parameter Correlations
,”
ASME J. Tribol.
,
122
, pp.
300
307
.
19.
Liu
,
S.
, and
Wang
,
Q.
,
2001
, “
A Three-Dimensional Thermomechanical Model of Contact Between Non-Conforming Rough Surfaces
,”
ASME J. Tribol.
,
123
, pp.
17
26
.
20.
Mandelbrot, B. B., 1983, The Fractal Geometry of Nature, Freeman, New York.
21.
Berry
,
M. V.
, and
Lewis
,
Z. V.
,
1980
, “
On the Weierstrass-Mandelbrot Fractal Function
,”
Proc. R. Soc. London, Ser. A
,
370
, pp.
459
484
.
22.
Wang
,
S.
, and
Komvopoulos
,
K.
,
1994
, “
A Fractal Theory of the Interfacial Temperature Distribution in the Slow Sliding Regime: Part I—Elastic Contact and Heat Transfer Analysis
,”
ASME J. Tribol.
,
116
, pp.
812
823
.
23.
Komvopoulos
,
K.
, and
Yan
,
W.
,
1997
, “
A Fractal Analysis of Stiction in Microelectromechanical Systems
,”
ASME J. Tribol.
,
119
, pp.
391
400
.
24.
Komvopoulos
,
K.
,
2000
, “
Head-Disk Interface Contact Mechanics for Ultrahigh Density Magnetic Recording
,”
Wear
,
238
, pp.
1
11
.
25.
Carslaw, H. S., and Jaeger, J. C., 1959, Conduction of Heat in Solids, Clarendon, Oxford, UK.
26.
Uetz
,
H.
, and
Fo¨hl
,
J.
,
1978
, “
Wear as an Energy Transformation Process
,”
Wear
,
49
, pp.
253
264
.
27.
Johnson, K. L., 1985, Contact Mechanics, Cambridge University Press, Cambridge, UK.
28.
Barber
,
J. R.
,
1984
, “
Thermoelastic Displacements and Stresses Due to a Heat Source Moving Over the Surface of a Half Plane
,”
ASME J. Appl. Mech.
,
51
, pp.
636
640
.
29.
Bailey
,
D. M.
, and
Sayles
,
R. S.
,
1991
, “
Effect of Roughness and Sliding Friction on Contact Stresses
,”
ASME J. Tribol.
,
113
, pp.
729
738
.
You do not currently have access to this content.