A gear-cam adaptor was used to investigate the effect of an extreme pressure (EP) additive in the base oil and roller’s surface roughness on the pitting life of a disk specimen under oil lubrication with rolling-sliding line contacts. Incorporating the mean friction coefficient, increases in the Vickers microhardnesses within the layer of strain hardening can explain the influence of the EP additive on the material toughness of the ratchetting layer. The pull-off forces obtained from the tip/sample’s force-distance curve of an atomic force microscopy (AFM) can further reveal the ever-growing characteristic of the boundary layer, which is benefit to retard the growth of cracks. Weibull plots for disk’s pitting life are provided for three lubrication cases. The use of the EP additive in the base oil can expand the range of pitting-life distribution; on the other hand, increasing the roller’s surface roughness can also elevate the pitting life of the specimen lubricated by the same oil. From the study of contact subsurface, the distributions of four material responses: boundary layer, ratchetting layer, shakedown layer, and elastic layer, can be found. The EP additive in the base oil affects the behavior of the first two layers and roller’s surface roughness, the dominant factor, even does the third one.

1.
Whitehouse, D. J., 1994, Handbook of Surface Metrology, IOP Publishing Ltd., pp. 836–838.
2.
Smith
,
J. O.
, and
Liu
,
C. K.
,
1953
, “
Stress Due to Tangential and Normal Loads on an Elastic Solid with Application to Some Contact Stress Problems
,”
ASME J. Appl. Mech.
, pp.
157
166
.
3.
Bailey
,
D. M.
, and
Sayles
,
R. S.
,
1991
, “
Effect of Roughness and Sliding Friction on Contact Stresses
,”
ASME J. Tribol.
,
113
, No
4
, pp.
729
738
.
4.
Tallian
,
T. E.
,
Chiu
,
Y. P.
, and
Amerongen
,
E. V.
,
1978
, “
Prediction of Traction and Microgeometry Effects on Rolling Contact Fatigue Life
,”
ASME J. Lubr. Technol.
,
100
, pp.
156
166
.
5.
Clarke
,
T. M.
,
Miller
,
G. R.
,
Keer
,
L. M.
, and
Cheng
,
H. S.
,
1985
, “
The Role of Near Surface Inclusions in the Pitting of Gears
,”
ASLE Trans.
,
28
, No
1
, pp.
111
116
.
6.
Harris
,
T. A.
, and
Wedeven
,
L. D.
,
1989
, “
Rolling Bearing Tribology—Past, Present and Future
,”
STLE Lubrication Engineering
,
45
, No
11
, pp.
673
682
.
7.
Merwin, J. E., and Johnson, K. L., 1963, “An Analysis of Plastic Deformation in Rolling Contact,” Proceedings of the Institution of Mechanical Engineers, 177, No. 25, pp. 676–690.
8.
Johnson, K. L., 1987, “Aspects of Contact Mechanics,” Proc. Int. Conf. On Tribology-Friction, Lubrication, and Wear, Fifty Years on, in Proc. of ImechE, C246187, pp. 919–923.
9.
Welsh, N. C., 1957, “Structure Changes in Rubbed Steel Surfaces,” Proceedings of the Institution of Mechanical Engineers Conference on Lubrication and Wear, p. 701.
10.
Bower
,
A. F.
, and
Johnson
,
K. L.
,
1989
, “
The Influence of Strain Hardening on Cumulative Plastic Deformation in Rolling and Sliding Line Contact
,”
J. Mech. Phys. Solids
,
37
, No
4
, pp.
471
493
.
11.
Tyfour
,
W. R.
, and
Beynon
,
J. H.
,
1994
, “
The Effect of Rolling Direction Reversal on the Wear Mechanism of Pearlitic Rail Steel
,”
Tribol. Int.
,
27
, No
6
, pp.
401
412
.
12.
Tyfour
,
W. R.
,
Beynon
,
J. H.
, and
Kappor
,
A.
,
1995
, “
The Steady State Wear Behavior of Pearlitic Rail Steel Under Dry Rolling-Sliding Contact Conditions
,”
Wear
,
180
, pp.
79
89
.
13.
Kapoor
,
A.
,
1994
, “
A Re-Evaluation of the Life to Rupture of Ductile Metals by Cyclic Plastic Strain
,”
Fatigue Fract. Eng. Mater. Struct.
,
17
, No
2
, pp.
201
219
.
14.
Su
,
X.
, and
Clayton
,
P.
,
1996
, “
Surface-Initiated Rolling Contact Fatigue of Pearlite and Low Carbon Bainitic Steels
,”
Wear
,
197
, pp.
137
144
.
15.
Lunberg
,
G.
, and
Palmgren
,
A.
,
1947
, “
Dynamic Capacity of Rolling Bearings
,”
Acta Polytech, Mech. Eng. Ser. 2
, Royal Swedish Academy of Engineer,
1
, No
3
, p.
7
7
.
16.
Lunberg
,
G.
, and
Palmgren
,
A.
,
1952
, “
Dynamic Capacity of Roller Bearings
,”
Acta Polytech, Mech. Eng. Ser. 2
, Royal Swedish Academy of Engineer,
2
, No
4
, p.
96
96
.
17.
Tallian
,
T.
,
1967
, “
On Competing Failure Modes in Rolling Contact
,”
ASLE Trans.
,
10
, pp.
418
439
.
18.
Dawson
,
P. H.
,
1965
, “
Further Experiments on the Effect of Metallic Contact on the Pitting of Lubricated Rolling Contacts
,”
Proceedings of the Institution of Mechanical Engineers
,
180
, No
3B
, pp.
95
100
.
19.
Soda
,
N.
, and
Yamamoto
,
T.
,
1982
, “
Effect of Tangential Traction and Roughness on Crack Initiation/Propagation During Rolling Contact
,”
ASLE Trans.
,
25
, No
2
, pp.
198
206
.
20.
Berthe, D., 1974, Les effects hydrodynamiques sur la fatigue des surfaces dans les contacts Hertzien, Thesis No. 216, L’Universite´ Claud Bernard, Lyon, France.
21.
Jefferies
,
J. A.
, and
Johnson
,
K. L.
,
1968
, “
Traction in Elastohydrodynamic Contacts: Sliding Friction between Lubricated Rollers
,”
Proceedings of the Institution of Mechanical Engineers
,
181
, No
1
, pp.
281
291
.
22.
Torrance
,
A. A.
,
Morgan
,
J. E.
, and
Wan
,
G. T. Y.
,
1996
, “
An Additive’s Influence on the Pitting and Wear of Ball Bearing Steel
,”
Wear
,
192
, pp.
66
73
.
23.
Wang
,
Y.
,
Fernandez
,
J. E.
, and
Cuervo
,
D. G.
,
1996
, “
Rolling-Contact Fatigue Lives of Steel AISI 52100 Balls with Eight Mineral and Synthetic Lubricants
,”
Wear
,
196
, pp.
110
119
.
24.
Fujita
,
K.
, and
Yoshida
,
A.
,
1981
, “
Effect of Hardness Difference on the Surface Durability and Surface Failure of Steel Rollers
,”
Wear
,
67
, pp.
187
200
.
25.
Cheng
,
W.
,
Cheng
,
H. S.
,
Mura
,
T.
, and
Keer
,
L. M.
,
1994
, “
Micromechanics Modeling of Crack Initiation Under Contact Fatigue
,”
ASME J. Tribol.
,
116
, No
1
, pp.
2
8
.
26.
Lin
,
J. F.
,
Chou
,
C. C.
, and
Chen
,
S. T.
,
1996
, “
The Effect of Surface Chemistry in Lubrication on the Tribological Behavior of Steel Rollers under Rolling-Sliding Contacts
,”
Tribotest Journal
, No.
2–3
, pp.
205
234
.
27.
Chou
,
C. C.
, and
Lin
,
J. F.
,
1997
, “
Tribological Effects of Roughness and Running-In on Oil-Lubricated Line Contacts
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
211
, pp.
209
222
.
28.
Johnson, K. L., and Jefferis, J. A., 1963, “Plastic Flow and Residual Stresses in Rolling and Sliding Contact,” Proc. Institution of Mechanical Engineers Symposium on Rolling Contact Fatigue, London, pp. 50–56.
29.
Ludwik, P., 1909, Elemente der Technologischen Mechanik, Springer, Berlin.
30.
Kim
,
K.
, and
Ludema
,
K. C.
,
1995
, “
A Correlation Between Low Cycle Fatigue Properties and Scuffing Properties of 4340 Steel
,”
ASME J. Tribol.
,
117
, No
4
, pp.
617
621
.
31.
Cappella
,
B.
,
Baschieri
,
P.
,
Frediani
,
C.
,
Miccoli
,
P.
, and
Ascoli
,
C.
,
1997
, “
Force-Distance Curves by AFM
,”
IEEE Eng. Med. Biol. Mag.
,
16
, March–April, pp.
58
65
.
32.
Johnson
,
K. L.
,
Kendall
,
K.
, and
Roberts
,
A. D.
,
1971
, “
Surface Energy and the Contact of Elastic Solids
,”
Proc. R. Soc. London, Ser. A
,
324
, pp.
301
313
.
33.
Tolman
,
R. C.
,
1949
,
J. Chem. Phys.
,
17
, pp.
333
333
.
34.
Melrose
,
J. C.
,
1968
, “
Thermodynamic Aspects of Capillarity
,”
Ind. Eng. Chem.
,
60
, pp.
53
70
.
35.
Lin
,
J. F.
,
Chou
,
C. C.
, and
Chen
,
S. T.
,
1999
, “
Models for Temperature-Kinetic Aspect of Friction and Wear in Oil Lubrication
,”
ASME J. Tribol.
,
121
, No
4
, pp.
774
786
.
36.
Hills
,
D. A.
, and
Ashelby
,
D. W.
,
1980
, “
A Note on Shakedown
,”
Wear
,
65
, pp.
125
129
.
37.
Ying
,
T. N.
, and
Hsu
,
S. M.
,
1997
, “
Effect of Friction on Surface Strain Distribution of Steel
,”
STLE Tribol. Trans.
40
, No
3
, pp.
429
435
.
38.
Chou, C. C., Lin, J. F., and Lin, R. T., 2000, “Surface Fatigue of a Line Contact System of Steel under Oil Lubrication,” Wear, submitted for review.
You do not currently have access to this content.