To study the evolution of asperity contact in the sliding contact, a new in situ observation system of sheet metal surface is built up. The workpiece is stationary so that the continuous deformation of a specific group of asperities can be traced. In the case of no strain rate in the substrate of workpiece, the experiments for various materials, roughness patterns, sliding velocities, and normal loads all show that the fractional contact area will increase from its initial state of pure flattening without shear stress, to a saturated value with sliding distance in different rates. The sliding velocity has minor influence on the variation of contact area for same sliding distance. The maximum increasing rate of the contact area is found in the case of medium load. In most cases, the increase in contact area takes place with simultaneously decreasing shear stress and pressure on the flattened asperity peak. The development of adhesive wear can be clearly observed in the case of high normal load and long sliding distance.

1.
Greenwood
,
J. A.
, and
Williamson
,
J. B. P.
,
1966
, “
Contact of Nominally Flat Surface
,”
Proc. Roy. Soc., London, Sect. A
,
A295
, pp.
300
319
.
2.
Chang
,
W. R.
,
Etsion
,
I.
, and
Bogy
,
D. B.
,
1987
, “
An Elastic-Plastic Model for the Contact of Rough Surfaces
,”
ASME J. Tribol.
,
110
, pp.
50
56
.
3.
Halling
,
J. I.
, and
Nuri
,
K. A.
,
1988
, “
The Elastic-Plastic Contact of Rough Surfaces and its Relevance in Study of Wear
,”
Proc. Inst. Mech. Eng. [H]
,
202
, No.
C4
, pp.
269
274
.
4.
So
,
H.
, and
Liu
,
D. C.
,
1991
, “
An Elastic-Plastic Model for the Contact of Anisotropic Rough Surface
,”
Wear
,
146
, pp.
201
218
.
5.
Majumdar
,
A.
, and
Bhushan
,
B.
,
1991
, “
Fractal Model of Elastic-Plastic Contact Between Rough Surfaces
,”
ASME J. Tribol.
,
113
, pp.
1
11
.
6.
Majumdar
,
A.
, and
Bhushan
,
B.
,
1992
, “
Elastic-Plastic Contact Model for Bifractal Surfaces
,”
Wear
,
153
, pp.
53
64
.
7.
Ju
,
Y.
, and
Zheng
,
L.
,
1992
, “
A Full Numerical Solution for the Elastic Contact of Three-Dimensional Real Rough Surfaces
,”
Wear
,
157
, pp.
151
161
.
8.
Horng
,
J. H.
,
1998
, “
An Elliptic Elastic-Plastic Asperity Microcontact Model for Rough Surfaces
,”
ASME J. Tribol.
,
120
, No.
1
, pp.
82
88
.
9.
Greenwood
,
J. A.
, and
Rowe
,
G. W.
,
1965
, “
Deformation of Surface Asperities During Bulk Plastic Flow
,”
J. Appl. Phys.
,
36
, pp.
667
668
.
10.
Wilson
,
W. R. D.
, and
Sheu
,
S.
,
1988
, “
Real Area of Contact and Boundary Friction in Metal Forming
,”
Int. J. Mech. Sci.
,
30
, No.
7
, pp.
475
489
.
11.
Sutcliffe
,
M. P. F.
,
1988
, “
Surface Asperity Deformation in Metal Forming Processes
,”
Int. J. Mech. Sci.
,
30
, No.
11
, pp.
847
868
.
12.
Korzekwa
,
D. A.
,
Dawson
,
P. R.
, and
Wilson
,
W. R. D.
,
1992
, “
Surface Asperity Deformation During Sheet Forming
,”
Int. J. Mech. Sci.
,
34
, No.
7
, pp.
521
539
.
13.
Sutcliffe
,
M. P. F.
,
1999
, “
Flattening of Random Rough Surfaces in Metal-Forming Processes
,”
ASME J. Tribol.
,
121
, No.
3
, pp.
433
440
.
14.
Kudo
,
H.
,
1965
, “
A Note on the Role of Microscopical Trapped Lubricant at the Tool-Work Interface
,”
Int. J. Mech. Sci.
,
7
, pp.
383
388
.
15.
Johnson
,
K. L.
,
1968
, “
Deformation of a Plastic Wedge by a Rigid Flat Die Under the Action of a Tangential Force
,”
J. Mech. Phys. Solids
,
16
, pp.
395
402
.
16.
Wanheim
,
T.
,
Bay
,
N.
, and
Petersen
,
A. S.
,
1975
, “
Ra and the Average Effective Strain of Surface Asperities Deformed in Metal Working Processes
,”
Wear
,
34
, pp.
77
84
.
17.
Avitzur
,
B.
,
Huang
,
C. K.
, and
Zhu
,
Y. D.
,
1984
, “
A Friction Model Based on the Upper-Bound Approach To the Ridge and Sublayer Deformations
,”
Wear
,
95
, pp.
59
77
.
18.
Komvopoulos
,
K.
,
Saka
,
N.
, and
Suh
,
N. P.
,
1986
, “
Plowing Friction in Dry and Lubricated Metal Sliding
,”
ASME J. Tribol.
,
108
, pp.
301
313
.
19.
Bin
,
F.
, and
Luo
,
Z. J.
,
1988
, “
Finite Element Simulation of the Friction Mechanism in Plastic-Working Technology
,”
Wear
,
121
, pp.
41
51
.
20.
Carter
, Jr.,
W. T.
,
1994
, “
A Model for friction in Metal Forming
,”
ASME J. Tribol.
,
116
, No.
1
, pp.
8
13
.
21.
Kayaba
,
T.
, and
Kato
,
K.
,
1978
, “
Experimental Analysis of Junction Growth with a Junction Model
,”
Wear
,
51
, pp.
105
116
.
22.
Azushima
,
A.
,
1995
, “
Direct Observation of Contact Behavior to Interpret the Pressure Dependence of the Coefficient of Friction in Sheet Metal Forming
,”
Annals of the CIRP
,
44
, No.
1
, pp.
209
212
.
23.
Azushima
,
A.
,
Yoneyama
,
S.
,
Yamaguchi
,
T.
, and
Kudo
,
H.
,
1996
, “
Direct Observation of Microcontact Behavior at the Interface Between Tool and Workpiece in Lubricated Upsetting
,”
Annals of the CIRP
,
45
, No.
1
, pp.
205
210
.
24.
Azushima
,
A.
,
Miyamoto
,
J.
, and
Kudo
,
H.
,
1998
, “
Effect of Surface Topography of Workpiece on Pressure Dependence of Coefficient of Friction in Sheet Metal Forming
,”
Annals of the CIRP
,
47
, No.
1
, pp.
479
482
.
25.
Bech
,
J.
,
Bay
,
N.
, and
Eriksen
,
M.
,
1998
, “
A Study of Mechanisms of Liquid Lubrication in Metal Formation
,”
Annals of the CIRP
,
47
, No.
1
, pp.
221
226
.
26.
Lo
,
S. W.
, and
Horng
,
T. C.
,
1999
, “
Surface Roughening and Contact Behavior in Forming of Aluminum Sheet
,”
ASME J. Tribol.
,
121
, No.
2
, pp.
224
233
.
27.
Lo
,
S. W.
, and
Horng
,
T. C.
,
1999
, “
Lubricant Permeation from Micro Oil Pits under Intimate Contact Condition
,”
ASME J. Tribol.
,
121
, No.
4
, pp.
633
638
.
28.
Bowden, F. P., and Tabor, D., 1964, The Friction and Lubrication of Solids, Part II, Oxford University Press, Oxford.
You do not currently have access to this content.