Ceramics are hard and brittle. Machining such materials is time-consuming, difficult, and expensive. Current machining technology requires stiff machine, high hardness tools, and small material removal rates to minimize surface damage. This study demonstrates the feasibility of a novel ceramic machining concept that utilizes chemical reactions at the tool-workpiece interface to reduce the stress and minimize the surface damage. A series of cutting tests using a diamond wheel on silicon nitride with different chemical compounds has been performed. The results demonstrate that by using different chemistries, the material removal rate and the surface finish of the machined ceramic can be significantly altered. Some halogenated hydrocarbons show a significant improvement over some commercial machining fluids currently in use.

You do not currently have access to this content.