Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The present study focuses on the numerical investigation of nano-enhanced phase change material (Ne-PCM)-based heat pipes designed for electronic cooling applications. It uses both paraffin wax and n-eicosane as phase change materials (PCMs) that are combined with copper oxide (CuO) nanoparticles at different concentrations of 1%, 3%, 5%, and 7%. The heat input to the heat pipe ranges from 10 to 50 W in an increment of 10 W to simulate realistic operating conditions. The idea is to predict the heat pipe's thermal performance at various combinations of nanoparticles and PCMs and compare the same to the baseline case of deionized (DI) water (without PCM). The results show a constant drop in the evaporator temperature for the Ne-PCM-assisted heat pipes. Paraffin wax and n-eicosane exhibit maximum reductions of 2.86% and 1.94%, respectively, in evaporator wall temperature compared to using conventional DI water (without PCM). The thermal resistance of the heat pipe also decreases consistently with increasing the heat input for all cases, with the most significant reduction of 33.11% and 16.63% for paraffin wax–CuO- and n-eicosane–CuO-assisted heat pipes, respectively. The maximum evaporator heat transfer coefficients recorded are 257.79 W/m2K, 353 W/m2K, and 265.18 W/m2K for heat pipes using DI water (without PCM), paraffin wax–CuO, and n-eicosane–CuO, respectively. The nanoparticles act as a thermal conductivity enhancer and bring down the heat pipe's evaporator temperature with the addition of PCMs. Thus, the effective thermal conductivity of the Ne-PCM-based heat pipe is notably higher compared to heat pipes using DI water (without PCM). To understand the complex thermal behavior of the Ne-PCM-based heat pipes and to better predict their thermal performance, a predictive model has been developed using an artificial neural network (ANN). This model drives the genetic algorithm (GA) that considers the multivariable interaction of PCMs and nanoparticle concentrations to identify the optimal configuration and results in better thermal performance of the heat pipe. Thus, the combination of ANN and GA aids a useful approach for the effective prediction of the heat pipe's thermal performance. The outcomes of this study are useful for the development of sustainable solutions in electronic cooling applications.

References

1.
Shahjalal
,
M.
,
Shams
,
T.
,
Islam
,
M. E.
,
Alam
,
W.
,
Modak
,
M.
,
Hossain
,
S. B.
,
Ramadesigan
,
V.
,
Ahmed
,
M. R.
,
Ahmed
,
H.
, and
Iqbal
,
A.
,
2021
, “
A Review of Thermal Management for Li-Ion Batteries: Prospects, Challenges, and Issues
,”
J. Energy Storage
,
39
, p.
102518
.
2.
Liu
,
C.
,
Xu
,
D.
,
Weng
,
J.
,
Zhou
,
S.
,
Li
,
W.
,
Wan
,
Y.
,
Jiang
,
S.
,
Zhou
,
D.
,
Wang
,
J.
, and
Huang
,
Q.
,
2020
, “
Phase Change Materials Application in Battery Thermal Management System: A Review
,”
Materials
,
13
(
20
), pp.
1
37
.
3.
Greco
,
A.
,
Jiang
,
X.
, and
Cao
,
D.
,
2015
, “
An Investigation of Lithium-Ion Battery Thermal Management Using Paraffin/Porous-Graphite-Matrix Composite
,”
J. Power Sources
,
278
, pp.
50
68
.
4.
Choudhari
,
V. G.
,
Dhoble
,
A. S.
,
Panchal
,
S.
,
Fowler
,
M.
, and
Fraser
,
R.
,
2021
, “
Numerical Investigation on Thermal Behaviour of 5 × 5 Cell Configured Battery Pack Using Phase Change Material and Fin Structure Layout
,”
J. Energy Storage
,
43
, p.
103234
.
5.
Han
,
U.
,
Jun
,
Y. J.
,
Choi
,
H.
, and
Lee
,
H.
,
2023
, “
Thermal Performance Analysis and Optimization of Heat Pipe-Assisted Hybrid Fin Structure for Lithium Battery Thermal Management for Extreme Thermal Conditions
,”
Int. Commun. Heat Mass Transfer
,
149
, p.
107128
.
6.
Jose
,
J.
, and
Hotta
,
T. K.
,
2023
, “
A Comprehensive Review of Heat Pipe: Its Types, Incorporation Techniques, Methods of Analysis and Applications
,”
Therm. Sci. Eng. Prog.
,
42
, p.
101860
.
7.
Jose
,
J.
, and
Hotta
,
T. K.
,
2024
, “
Numerical Investigation on Thermal Performance of Nanofluid-Assisted Wickless Heat Pipes for Electronic Thermal Management
,”
ASME J. Therm. Sci. Eng. Appl.
,
16
(
4
), p.
041009
.
8.
Tang
,
H.
,
Xie
,
Y.
,
Tang
,
Y.
,
Wu
,
X.
,
Wu
,
C.
, and
Sun
,
Y.
,
2022
, “
Stress Analysis and Thermal Performance of Ultra-Thin Heat Pipes for Compact Electronics
,”
Int. Commun. Heat Mass Transfer
,
139
, p.
106484
.
9.
Alammar
,
A. A.
,
Al-Dadah
,
R. K.
, and
Mahmoud
,
S. M.
,
2018
, “
Effect of Inclination Angle and Fill Ratio on Geyser Boiling Phenomena in a Two-Phase Closed Thermosiphon-Experimental Investigation
,”
Energy Convers. Manag.
,
156
, pp.
150
166
.
10.
Ersöz
,
M. A.
, and
Yildiz
,
A.
,
2016
, “
Thermoeconomic Analysis of Thermosyphon Heat Pipes
,”
Renewable Sustainable Energy Rev.
,
58
, pp.
666
673
.
11.
Jafari
,
D.
,
Franco
,
A.
,
Filippeschi
,
S.
, and
Di Marco
,
P.
,
2016
, “
Two-Phase Closed Thermosyphons: A Review of Studies and Solar Applications
,”
Renewable Sustainable Energy Rev.
,
53
, pp.
575
593
.
12.
Lu
,
P.
,
Yan
,
X.
,
Yang
,
Q.
, and
Wei
,
J.
,
2023
, “
Numerical Investigation Into the Gas-Liquid Two-Phase Flow Regime and Heat Transfer Characteristics in a Gravity Heat Pipe
,”
ASME J. Therm. Sci. Eng. Appl.
,
15
(
12
), p.
121002
.
13.
Nikolaenko
,
Y. E.
,
Pekur
,
D. V.
,
Kravets
,
V. Y.
,
Sorokin
,
V. M.
,
Kozak
,
D. V.
,
Melnyk
,
R. S.
,
Lipnitskyi
,
L. V.
, and
Solomakha
,
A. S.
,
2022
, “
Study on the Performance of the Low-Cost Cooling System for Transmit/Receive Module and Broadening the Exploitative Capabilities of the System Using Gravity Heat Pipes
,”
ASME J. Therm. Sci. Eng. Appl.
,
14
(
12
), p.
121001
.
14.
Patel
,
J. R.
, and
Rathod
,
M. K.
,
2020
, “
Recent Developments in the Passive and Hybrid Thermal Management Techniques of Lithium-Ion Batteries
,”
J. Power Sources
,
480
, p.
228820
.
15.
Liu
,
F.
,
Wang
,
J.
,
Liu
,
Y.
,
Wang
,
F.
,
Chen
,
Y.
,
Du
,
Q.
,
Sun
,
F.
, and
Yang
,
N.
,
2022
, “
Natural Convection Characteristics of Honeycomb Fin With Different Hole Cells for Battery Phase-Change Material Cooling Systems
,”
J. Energy Storage
,
51
, p.
104578
.
16.
Liu
,
F.
,
Wang
,
J.
,
Liu
,
Y.
,
Wang
,
F.
,
Yang
,
N.
,
Liu
,
X.
,
Liu
,
H.
,
Li
,
W.
,
Liu
,
H.
, and
Huang
,
B.
,
2021
, “
Performance Analysis of Phase Change Material in Battery Thermal Management With Biomimetic Honeycomb Fin
,”
Appl. Therm. Eng.
,
196
, p.
117296
.
17.
Afaynou
,
I.
,
Faraji
,
H.
,
Choukairy
,
K.
,
Arshad
,
A.
, and
Arıcı
,
M.
,
2023
, “
Heat Transfer Enhancement of Phase-Change Materials (PCMs) Based Thermal Management Systems for Electronic Components: A Review of Recent Advances
,”
Int. Commun. Heat Mass Transfer
,
143
, p.
106690
.
18.
Najafi
,
F.
,
Ramezani
,
D.
,
Sheykh
,
S.
,
Aldaghi
,
A.
,
Taheri
,
A.
,
Sardarabadi
,
M.
, and
Passandideh-Fard
,
M.
,
2021
, “
Fabrication and Experimental Characterization of a Modified Heat-Sink Based on a Semi-Active/Passive Cooling Strategy With Fluid Flow and Nano-Enhanced Phase Change Material
,”
Int. Commun. Heat Mass Transfer
,
126
, p.
105371
.
19.
Akhil Krishnan
,
S. R.
,
Sivan
,
S.
,
Midhun
,
V. C.
, and
Behera
,
S. R.
,
2023
, “
Experimental and Numerical Investigation of Solid-Solid Phase Change Material Assisted Heat Sink With Integrated Heat Pipe for Electronic Cooling
,”
J. Energy Storage
,
59
, p.
106494
.
20.
Shailesh
,
K.
,
Naresh
,
Y.
, and
Banerjee
,
J.
,
2023
, “
Heat Transfer Performance of a Novel PCM Based Heat Sink Coupled With Heat Pipe: An Experimental Study
,”
Appl. Therm. Eng.
,
229
, p.
120552
.
21.
Zahid
,
I.
,
Farhan
,
M.
,
Farooq
,
M.
,
Asim
,
M.
, and
Imran
,
M.
,
2023
, “
Experimental Investigation for Thermal Performance Enhancement of Various Heat Sinks Using Al2O3NePCM for Cooling of Electronic Devices
,”
Case Stud. Therm. Eng.
,
41
, p.
102553
.
22.
Li
,
W. Q.
,
Li
,
Y. X.
,
Yang
,
T. H.
,
Zhang
,
T. Y.
, and
Qin
,
F.
,
2023
, “
Experimental Investigation on Passive Cooling, Thermal Storage and Thermoelectric Harvest With Heat Pipe-Assisted PCM-Embedded Metal Foam
,”
Int. J. Heat Mass Transfer
,
201
, p.
123651
.
23.
Ali
,
H. M.
,
2022
, “
An Experimental Study for Thermal Management Using Hybrid Heat Sinks Based on Organic Phase Change Material, Copper Foam, and Heat Pipe
,”
J. Energy Storage
,
53
, p.
105185
.
24.
Sutheesh
,
P. M.
,
Nichit
,
R. B.
, and
Rohinikumar
,
B.
,
2024
, “
Numerical Investigation of Thermal Management of Lithium Ion Battery Pack With Nano-Enhanced Phase Change Material and Heat Pipe
,”
J. Energy Storage
,
77
, p.
109972
.
25.
Manova
,
S.
,
Asirvatham
,
L. G.
,
Nimmagadda
,
R.
,
Bose
,
J. R.
, and
Wongwises
,
S.
,
2020
, “
Cooling of High Heat Flux Electronic Devices Using Ultra-Thin Multiport Minichannel Thermosyphon
,”
Appl. Therm. Eng.
,
169
, p.
114669
.
26.
Hayat
,
M. A.
,
Ali
,
H. M.
,
Janjua
,
M. M.
,
Pao
,
W.
,
Li
,
C.
, and
Alizadeh
,
M.
,
2020
, “
Phase Change Material/Heat Pipe and Copper Foam-Based Heat Sinks for Thermal Management of Electronic Systems
,”
J. Energy Storage
,
32
, p.
101971
.
27.
Chen
,
W.
,
Huang
,
J.
,
Ma
,
H.
,
Zhan
,
H.
, and
Zhang
,
P.
,
2021
, “
Dynamic Characteristics of an Integrated Cooling System Comprising Vapor Compression and Thermosyphon Loop for Electronics Cooling
,”
Case Stud. Therm. Eng.
,
28
, p.
101424
.
28.
Ng
,
V. O.
,
Yu
,
H.
,
Wu
,
H. A.
, and
Hung
,
Y. M.
,
2021
, “
Thermal Performance Enhancement and Optimization of Two-Phase Closed Thermosyphon With Graphene-Nanoplatelets Coatings
,”
Energy Convers. Manag.
,
236
, p.
114039
.
29.
Bhatt
,
A. A.
,
Jain
,
S. V.
, and
Patel
,
R. N.
,
2022
, “
Experimental Investigations on Performance Analysis of a Wickless Thermosiphon Heat Pipe With Two Heat Sources and Multiple Branches
,”
ASME J. Therm. Sci. Eng. Appl.
,
14
(
10
), p.
101006
.
30.
Behi
,
H.
,
Ghanbarpour
,
M.
, and
Behi
,
M.
,
2017
, “
Investigation of PCM-Assisted Heat Pipe for Electronic Cooling
,”
Appl. Therm. Eng.
,
127
, pp.
1132
1142
.
31.
Selvaraj
,
V.
, and
Krishnan
,
H.
,
2022
, “
Acidic Functionalized Graphene Dispersed Polyethylene Glycol Nano-Phase Change Material for the Active Cooling of a Simulated Heat-Generating Electronic System
,”
J. Energy Storage
,
45
, p.
103774
.
32.
Faraji
,
H.
,
Yıldız
,
Ç
,
Arshad
,
A.
,
Arıcı
,
M.
,
Choukairy
,
K.
, and
El Alami
,
M.
,
2023
, “
Passive Thermal Management Strategy for Cooling Multiple Portable Electronic Components: Hybrid Nanoparticles Enhanced Phase Change Materials as an Innovative Solution
,”
J. Energy Storage
,
70
, p.
108087
.
33.
Bais
,
A. R.
,
Subhedar
,
D. G.
, and
Panchal
,
S.
,
2022
, “
Critical Thickness of Nano-Enhanced RT-42 Paraffin Based Battery Thermal Management System for Electric Vehicles: A Numerical Study
,”
J. Energy Storage
,
52
, p.
104757
.
34.
Srivastava
,
G.
,
Nandan
,
R.
, and
Das
,
M. K.
,
2022
, “
Thermal Runaway Management of Li-Ion Battery Using PCM: A Parametric Study
,”
Energy Convers. Manag. X
,
16
, p.
100306
.
35.
Eidan
,
A. A.
,
AlSahlani
,
A.
,
Ahmed
,
A. Q.
,
Al-fahham
,
M.
, and
Jalil
,
J. M.
,
2018
, “
Improving the Performance of Heat Pipe-Evacuated Tube Solar Collector Experimentally by Using Al2O3 and CuO/Acetone Nanofluids
,”
Sol. Energy
,
173
, pp.
780
788
.
36.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
,
1992
, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
,
100
(
2
), pp.
335
354
.
37.
Vajjha
,
R. S.
,
Das
,
D. K.
, and
Namburu
,
P. K.
,
2010
, “
Numerical Study of Fluid Dynamic and Heat Transfer Performance of Al2O3 and CuO Nanofluids in the Flat Tubes of a Radiator
,”
Int. J. Heat Fluid Flow
,
31
(
4
), pp.
613
621
.
38.
Sasidharan
,
U. K.
, and
Bandaru
,
R.
,
2022
, “
Thermal Management of Photovoltaic Panel With Nano-Enhanced Phase Change Material at Different Inclinations
,”
Environ. Sci. Pollut. Res.
,
29
(
23
), pp.
34759
34775
.
39.
Duddeck
,
F. M. E.
, and
Poisson
,
S. D.
,
2002
,
Heat Conduction, Lecture Notes in Applied and Computational Mechanics
,
Springer
,
New York
.
40.
Fadhl
,
B.
,
Wrobel
,
L. C.
, and
Jouhara
,
H.
,
2013
, “
Numerical Modelling of the Temperature Distribution in a Two-Phase Closed Thermosyphon
,”
Appl. Therm. Eng.
,
60
(
1–2
), pp.
122
131
.
41.
Mehrali
,
M.
,
Sadeghinezhad
,
E.
,
Azizian
,
R.
,
Akhiani
,
A. R.
,
Tahan Latibari
,
S.
,
Mehrali
,
M.
, and
Metselaar
,
H. S. C.
,
2016
, “
Effect of Nitrogen-Doped Graphene Nanofluid on the Thermal Performance of the Grooved Copper Heat Pipe
,”
Energy Convers. Manag.
,
118
, pp.
459
473
.
You do not currently have access to this content.