Abstract

Nanoparticle coating on copper substrates like carbon nanotubes (CNT) and graphene oxide (GO) is a promising method to enhance the surface properties as well as improve the boiling heat transfer characteristics. The main objective of the present investigation is to study the influence of the nanocomposite coating on the performance of pool boiling heat transfer. CNT + GO nanomaterials are coated on copper substrates via the dip coating method by varying the concentration of the nanomaterial. Morphological analysis, surface roughness, and wettability behavior of the coating are also observed. The result shows that CNT + GO increases the surface roughness of the samples, and the coated samples are superhydrophilic in nature. Compared with the uncoated sample, the coated sample shows the maximum increase in critical heat flux and heat transfer coefficient is 145.76% and 259.08%, respectively. A high-speed camera is used to study the bubble dynamics. Bubble diameter, departure frequency, and site density are also calculated and presented.

References

1.
Sheikholeslami
,
M. M. S. N.
,
Rezaeianjouybari
,
B.
,
Darzi
,
M.
,
Shafee
,
A.
,
Li
,
Z.
, and
Nguyen
,
T. K.
,
2019
, “
Application of Nano-Refrigerant for Boiling Heat Transfer Enhancement Employing an Experimental Study
,”
Int. J. Heat Mass Transfer
,
141
, pp.
974
980
.
2.
Al-Zareer
,
M.
,
Dincer
,
I.
, and
Rosen
,
M. A.
,
2019
, “
A Novel Approach for Performance Improvement of Liquid to Vapor Based Battery Cooling Systems
,”
Energy Convers. Manage.
,
187
, pp.
191
204
.
3.
Ebrahim
,
S. A.
,
Pradeep
,
E.
, and
Ahmed
,
M.
,
2022
, “
Role of Sea Salt Deposition on the Advances in Pool Boiling Heat Transfer in Nuclear Reactors
,”
Appl. Therm. Eng.
,
217
, p.
119146
.
4.
Bhaumik
,
S.
,
Agarwal
,
V. K.
, and
Gupta
,
S. C.
,
2004
, “
A Generalized Correlation of Nucleate Pool Boiling of Liquids
,”
Indian Journal of Chemical Technology
,
11
(
5
), pp.
719
725
.
5.
Mukherjee
,
A.
, and
Dhir
,
V. K.
,
2004
, “
Study of Lateral Merger of Vapor Bubbles During Nucleate Pool Boiling
,”
ASME J. Heat Transfer
,
126
(
6
), pp.
1023
1039
.
6.
Lu
,
F.
,
Peng
,
X. F.
, and
Bourouga
,
B.
,
2006
, “
Nucleate Boiling Modes of Subcooled Water on Fine Wires Submerged in a Pool
,”
Exp. Heat Transfer
,
19
(
2
), pp.
95
111
.
7.
Kangude
,
P.
, and
Srivastava
,
A.
,
2020
, “
Understanding the Growth Mechanism of Single Vapor Bubble on a Hydrophobic Surface: Experiments Under Nucleate Pool Boiling Regime
,”
Int. J. Heat Mass Transfer
,
154
, p.
119775
.
8.
Bang
,
I. C.
, and
Chang
,
S. H.
,
2005
, “
Boiling Heat Transfer Performance and Phenomena of Al2O3–Water Nano-Fluids From a Plain Surface in a Pool
,”
Int. J. Heat Mass Transfer
,
48
(
12
), pp.
2407
2419
.
9.
Wen
,
D.
, and
Ding
,
Y.
,
2005
, “
Experimental Investigation Into the Pool Boiling Heat Transfer of Aqueous Based γ-Alumina Nanofluids
,”
J. Nanopart. Res.
,
7
(
2–3
), pp.
265
274
.
10.
Chopkar
,
M.
,
Das
,
A. K.
,
Manna
,
I.
, and
Das
,
P. K.
,
2008
, “
Pool Boiling Heat Transfer Characteristics of ZrO 2–Water Nanofluids From a Flat Surface in a Pool
,”
Heat Mass Transfer
,
44
(
8
), pp.
999
1004
.
11.
Rostami
,
S.
,
Raki
,
E.
,
Abdollahi
,
A.
, and
Goldanlou
,
A. S.
,
2020
, “
Effects of Different Magnetic Fields on the Boiling Heat Transfer Coefficient of the NiO/Deionized Water Nanofluid, an Experimental Investigation
,”
Powder Technol.
,
376
, pp.
398
409
.
12.
Sharma
,
P. O.
,
Barewar
,
S. D.
, and
Chougule
,
S. S.
,
2021
, “
Experimental Investigation of Heat Transfer Enhancement in Pool Boiling Using Novel Ag/ZnO Hybrid Nanofluids
,”
J. Therm. Anal. Calorim.
,
143
(
2
), pp.
1051
1061
.
13.
Chai
,
Y.
,
Tian
,
W.
,
Tian
,
J.
,
Jin
,
L. W.
,
Meng
,
X. Z.
, and
Dang
,
S.
,
2019
, “
Experimental Investigation of a Thermosyphon With Microstructure on the Boiling Surface
,”
ASME J. Therm. Sci. Eng. Appl.
,
11
(
1
), p.
011018
.
14.
Khliyeva
,
O.
,
Zhelezny
,
V.
,
Lukianova
,
T.
,
Lukianov
,
N.
,
Semenyuk
,
Y.
,
Moreira
,
A. L. N.
,
Murshed
,
S. M. S.
,
Palomo del Barrio
,
E.
, and
Nikulin
,
A.
,
2020
, “
A new Approach for Predicting the Pool Boiling Heat Transfer Coefficient of Refrigerant R141b and Its Mixtures With Surfactant and Nanoparticles Using Experimental Data
,”
J. Therm. Anal. Calorim.
,
142
(
6
), pp.
2327
2339
.
15.
Deb
,
S.
,
Pal
,
S.
,
Das
,
D. C.
,
Das
,
M.
,
Das
,
A. K.
, and
Das
,
R.
,
2020
, “
Surface Wettability Change on TF Nanocoated Surfaces During Pool Boiling Heat Transfer of Refrigerant R-141b
,”
Heat Mass Transfer
,
56
(
12
), pp.
3273
3287
.
16.
Deb
,
S.
,
Das
,
M.
,
Das
,
D. C.
,
Pal
,
S.
,
Das
,
A. K.
, and
Das
,
R.
,
2021
, “
Significance of Surface Modification on Nucleate Pool Boiling Heat Transfer Characteristics of Refrigerant R-141b
,”
Int. J. Heat Mass Transfer
,
170
, p.
120994
.
17.
Fan
,
S.
,
Jiao
,
L.
,
Wang
,
K.
, and
Duan
,
F.
,
2020
, “
Pool Boiling Heat Transfer of Saturated Water on Rough Surfaces With the Effect of Roughening Techniques
,”
Int. J. Heat Mass Transfer
,
159
, p.
120054
.
18.
Benjamin
,
R. J.
, and
Balakrishnan
,
A. R.
,
1997
, “
Nucleation Site Density in Pool Boiling of Saturated Pure Liquids: Effect of Surface Microroughness and Surface and Liquid Physical Properties
,”
Exp. Therm. Fluid. Sci.
,
15
(
1
), pp.
32
42
.
19.
Kang
,
M. G.
,
2000
, “
Effect of Surface Roughness on Pool Boiling Heat Transfer
,”
Int. J. Heat Mass Transfer
,
43
(
22
), pp.
4073
4085
.
20.
Bon
,
B.
,
Klausner
,
J. F.
, and
Mckenna
,
E.
,
2013
, “
The Hoodoo: A new Surface Structure for Enhanced Boiling Heat Transfer
,”
ASME J. Therm. Sci. Eng. Appl.
,
5
(
1
), p.
011003
.
21.
Gheitaghy
,
A. M.
,
Saffari
,
H.
, and
Zhang
,
G. Q.
,
2019
, “
Effect of Nanostructured Microporous Surfaces on Pool Boiling Augmentation
,”
Heat Transfer Eng.
,
40
(
9–10
), pp.
762
771
.
22.
Ahn
,
H. S.
,
Lee
,
C.
,
Kim
,
J.
, and
Kim
,
M. H.
,
2012
, “
The Effect of Capillary Wicking Action of Micro/Nano Structures on Pool Boiling Critical Heat Flux
,”
Int. J. Heat Mass Transfer
,
55
(
1–3
), pp.
89
92
.
23.
Kano
,
I.
, and
Takahashi
,
Y.
,
2012
, “
Effect of Electric Field Generated by Micro-Scaled-Electrode on Pool Boiling
,”
2012 IEEE Industry Applications Society Annual Meeting
,
Las Vegas, NV
,
Oct. 7–11
, IEEE, pp.
1
7
.
24.
Takata
,
Y.
,
Hidaka
,
S.
, and
Kohno
,
M.
,
2012
, “
Effect of Surface Wettability on Pool Boiling: Enhancement by Hydrophobic Coating
,”
Int. J. Air-Cond. Refrig.
,
20
(
01
), p.
1150003
.
25.
Sarangi
,
S.
,
Weibel
,
J. A.
, and
Garimella
,
S. V.
,
2015
, “
Effect of Particle Size on Surface-Coating Enhancement of Pool Boiling Heat Transfer
,”
Int. J. Heat Mass Transfer
,
81
, pp.
103
113
.
26.
Das
,
S.
, and
Bhaumik
,
S.
,
2016
, “
The Effect of Coating Thickness and Roughness of Nucleate Pool Boiling Heat Transfer on Nanoparticle Coated Surface
,”
J. Inst. Eng. (India): Ser. E
,
97
(
1
), pp.
55
62
.
27.
Bhise
,
A.
,
Gajghate
,
S. S.
,
Bhaumik
,
S.
, and
Das
,
S.
,
2017
, “
Effect of Graphene Coated Surface on Pool Boiling Heat Transfer by Spin Coating Method
,”
Proceedings of the 24th National and 2nd International ISHMT-ASTFE Heat and Mass Transfer Conference (IHMTC-2017)
,
BITS Pilani, Hyderabad, India
.
28.
Gajghate
,
S. S.
,
Barathula
,
S.
,
Das
,
S.
,
Saha
,
B. B.
, and
Bhaumik
,
S.
,
2020
, “
Experimental Investigation and Optimization of Pool Boiling Heat Transfer Enhancement Over Graphene-Coated Copper Surface
,”
J. Therm. Anal. Calorim.
,
140
(
3
), pp.
1393
1411
.
29.
Mao
,
L.
,
Zhou
,
W.
,
Hu
,
X.
,
He
,
Y.
,
Zhang
,
G.
,
Zhang
,
L.
, and
Fu
,
R.
,
2020
, “
Pool Boiling Performance and Bubble Dynamics on Graphene Oxide Nanocoating Surface
,”
Int. J. Therm. Sci.
,
147
, p.
106154
.
30.
Kochkin
,
D. Y.
,
Arkhipov
,
V. E.
,
Zaitsev
,
D. V.
,
Frolov
,
L. B.
, and
Kabov
,
O. A.
,
2021
, “
Wettability of Graphene-Coated Copper Substrates
,”
AIP Conf. Proc.
,
2337
(
1
), p.
020008
.
31.
Diaz
,
R.
, and
Guo
,
Z.
,
2019
, “
Enhanced Conduction and Pool Boiling Heat Transfer on Single-Layer Graphene-Coated Substrates
,”
J. Enhanced Heat Transfer
,
26
(
2
), pp.
127
143
.
32.
Zheng
,
X.
, and
Park
,
C. W.
,
2015
, “
Experimental Study of the Sintered Multi-Walled Carbon Nanotube/Copper Microstructures for Boiling Heat Transfer
,”
Appl. Therm. Eng.
,
86
, pp.
14
26
.
33.
Amiri
,
A.
,
Shanbedi
,
M.
,
Amiri
,
H.
,
Heris
,
S. Z.
,
Kazi
,
S. N.
,
Chew
,
B. T.
, and
Eshghi
,
H.
,
2014
, “
Pool Boiling Heat Transfer of CNT/Water Nanofluids
,”
Appl. Therm. Eng.
,
71
(
1
), pp.
450
459
.
34.
Ho
,
J. Y.
,
Leong
,
K. C.
, and
Yang
,
C.
,
2014
, “
Saturated Pool Boiling From Carbon Nanotube Coated Surfaces at Different Orientations
,”
Int. J. Heat Mass Transfer
,
79
, pp.
893
904
.
35.
Kang
,
Y.
,
Lang
,
Z.
,
Wu
,
G.
, and
Zhao
,
H.
,
2023
, “
Synergistic Effect of Coating Copper Foam With Carbon Nanotubes on Pool Boiling Heat Transfer Performance
,”
Exp. Therm. Fluid. Sci.
,
144
, p.
110852
.
36.
Dharmendra
,
M.
,
Suresh
,
S.
,
Kumar
,
C. S.
, and
Yang
,
Q.
,
2016
, “
Pool Boiling Heat Transfer Enhancement Using Vertically Aligned Carbon Nanotube Coatings on a Copper Substrate
,”
Appl. Therm. Eng.
,
99
, pp.
61
71
.
37.
Pialago
,
E. J. T.
,
Kwon
,
O. K.
,
Jin
,
J. S.
, and
Park
,
C. W.
,
2016
, “
Nucleate Pool Boiling of R134a on Cold Sprayed Cu–CNT–SiC and Cu–CNT–AlN Composite Coatings
,”
Appl. Therm. Eng.
,
103
, pp.
684
694
.
38.
Gupta
,
S. K.
, and
Misra
,
R. D.
,
2019
, “
An Experimental Investigation on Pool Boiling Heat Transfer Enhancement Using Cu-Al2O3 Nano-Composite Coating
,”
Exp. Heat Transfer
,
32
(
2
), pp.
133
158
.
39.
Gupta
,
S. K.
, and
Misra
,
R. D.
,
2019
, “
Effect of Two-Step Electrodeposited Cu–TiO 2 Nanocomposite Coating on Pool Boiling Heat Transfer Performance
,”
J. Therm. Anal. Calorim.
,
136
(
4
), pp.
1781
1793
.
40.
Kim
,
S. J.
,
Bang
,
I. C.
,
Buongiorno
,
J.
, and
Hu
,
L. W.
,
2007
, “
Surface Wettability Change During Pool Boiling of Nanofluids and Its Effect on Critical Heat Flux
,”
Int. J. Heat Mass Transfer
,
50
(
19–20
), pp.
4105
4116
.
41.
Chen
,
J.
,
Chen
,
J.
,
Walther
,
J. H.
, and
Koumoutsakos
,
P.
,
2015
, “
Covalently Bonded Graphene–Carbon Nanotube Hybrid for High-Performance Thermal Interfaces
,”
Adv. Funct. Mater.
,
25
(
48
), pp.
7539
7545
.
42.
Song
,
G.
,
Sun
,
L.
,
Li
,
S.
,
Sun
,
Y.
,
Fu
,
Q.
, and
Pan
,
C.
,
2020
, “
An Experimental Investigation of Enhanced Pool Boiling Heat Transfer From Surfaces With Micro/Nano-Structures
,”
Composites Part B-Eng.
,
187
, p.
107841
.
43.
Rishi
,
A. M.
,
Gupta
,
A.
, and
Kandlikar
,
S. G.
,
2018
, “
Improving Aging Performance of Electrodeposited Copper Coatings During Pool Boiling
,”
Appl. Therm. Eng.
,
140
, pp.
406
414
.
44.
Lee
,
S.
,
Seo
,
G. H.
,
Lee
,
S.
,
Jeong
,
U.
,
Lee
,
S. J.
,
Kim
,
S. J.
, and
Choi
,
W.
,
2016
, “
Layer-by-layer Carbon Nanotube Coatings for Enhanced Pool Boiling Heat Transfer on Metal Surfaces
,”
Carbon
,
107
, pp.
607
618
.
45.
Dai
,
X.
,
Huang
,
X.
,
Yang
,
F.
,
Li
,
X.
,
Sightler
,
J.
,
Yang
,
Y.
, and
Li
,
C.
,
2013
, “
Enhanced Nucleate Boiling on Horizontal Hydrophobic-Hydrophilic Carbon Nanotube Coatings
,”
Appl. Phys. Lett.
,
102
(
16
), p.
161605
.
46.
Dai
,
X.
,
Yang
,
F.
,
Yang
,
R.
,
Huang
,
X.
,
Rigdon
,
W. A.
,
Li
,
X.
, and
Li
,
C.
,
2014
, “
Biphilic Nanoporous Surfaces Enabled Exceptional Drag Reduction and Capillary Evaporation Enhancement
,”
Appl. Phys. Lett.
,
105
(
19
), p.
191611
.
47.
Jiang
,
P.
,
Leo
,
S. Y.
,
Leverant
,
C.
,
Liu
,
D.
, and
Fang
,
Y.
,
University of Florida Research Foundation Inc.
,
2021
, “
Methods and Compositions Relating to Tunable Nanoporous Coatings
,” U.S. Patent No. 11,008,429.
48.
Minko
,
S.
,
Luzinov
,
I.
,
Motornov
,
M.
,
Sheparovych
,
R.
,
Lupitskyy
,
R.
,
Liu
,
Y.
, and
Klep
,
V.
,
2009
,
Smart Coatings II
,
ACS Publications
, p.
145
.
49.
Rafea
,
M. A.
,
Eid
,
A.
, and
Mustapha
,
N.
,
2023
, “
The Effect of Annealing on the Structure, Morphology, and Optical Properties of Co3O4 Thin Films Prepared Using a Modified dip Coating Technique
,”
Mater. Sci. Eng., B
,
290
, p.
116294
.
50.
Mandlik
,
P. S.
,
Landge
,
A. S.
,
Ingole
,
M. A.
, and
Bhosale
,
S. V.
,
2023
, “
Synthesis of Highly Superhydrophilic Cu2O Film Using Dip Coating Method
,”
Mater. Today: Proc
.
51.
Kalita
,
S.
,
Sen
,
P.
,
Sen
,
D.
,
Das
,
S.
,
Das
,
A. K.
, and
Saha
,
B. B.
,
2021
, “
Experimental Study of Nucleate Pool Boiling Heat Transfer on Microporous Structured by Chemical Etching Method
,”
Ther. Sci. Eng. Prog.
,
26
, p.
101114
.
52.
Yim
,
K.
,
Lee
,
J.
,
Naccarato
,
B.
, and
Kim
,
K. J.
,
2019
, “
Surface Wettability Effect on Nucleate Pool Boiling Heat Transfer With Titanium Oxide (TiO2) Coated Heating Surface
,”
Int. J. Heat Mass Transfer
,
133
, pp.
352
358
.
53.
Mohammadi
,
N.
,
Fadda
,
D.
,
Choi
,
C. K.
,
Lee
,
J.
, and
You
,
S. M.
,
2018
, “
Effects of Surface Wettability on Pool Boiling of Water Using Super-Polished Silicon Surfaces
,”
Int. J. Heat Mass Transfer
,
127
, pp.
1128
1137
.
54.
Sen
,
P.
,
Kalita
,
S.
,
Sen
,
D.
,
Das
,
A. K.
, and
Saha
,
B. B.
,
2022
, “
Pool Boiling Heat Transfer and Bubble Dynamics of Modified Copper Micro-Structured Surfaces
,”
Int. Commun. Heat Mass Transfer
,
134
, p.
106039
.
55.
Elkholy
,
A.
, and
Kempers
,
R.
,
2020
, “
Enhancement of Pool Boiling Heat Transfer Using 3D-Printed Polymer Fixtures
,”
Exp. Therm. Fluid. Sci.
,
114
, p.
110056
.
56.
Rohsenow
,
W. M.
,
1952
, “
A Method of Correlating Heat-Transfer Data for Surface Boiling of Liquids
,”
Trans. Am. Soc. Mech. Eng.
,
74
(
6
), pp.
969
975
.
You do not currently have access to this content.