Abstract

The efficiency of smoke extraction for longitudinal and transverse tunnel ventilation systems was studied in this paper by conducting numerical simulations using computational fluid dynamics (CFD). The smoke was assumed to result from a fire initiated from a truck inside the tunnel. The most dangerous issue regarding the fire inside tunnels is smoke as it leads to low visibility and choking and may lead to death. The most important result of this paper refers to that the longitudinal ventilation design does not provide efficient smoke extraction compared to the transverse ventilation design as the air jets push the smoke in the downstream direction and then the smoke spreads randomly after the flow loses its momentum gradually. There is a big drop in the visibility for the longitudinal ventilation design that appeared many times and at many locations downstream the fire location. On the other hand, the transverse ventilation design provided more efficient smoke extraction as the jet fan upstream the fire is turned off while the supply fan downstream the fire is reversed to work as an exhaust fan. As a conclusion based on the findings of this paper, it may be said that the transverse ventilation design provided more safe conditions, lower contaminants concentrations, and higher visibility values compared to the longitudinal ventilation design. This work tends to add more information to minimize the research gap related to having a detailed comparison between the two ventilation strategies for a special case where the fire size is relatively large in a long tunnel.

References

1.
Kunsch
,
J.
,
2002
, “
Simple Model for Control of Fire Gases in a Ventilated Tunnel
,”
Fire Saf. J.
,
37
(
1
), pp.
67
81
. 10.1016/S0379-7112(01)00020-0
2.
Kurioka
,
H.
,
Oka
,
Y.
,
Satoh
,
H.
, and
Sugawa
,
O.
,
2003
, “
Fire Properties in Near Field of Square Fire Source With Longitudinal Ventilation in Tunnels
,”
Fire Saf. J.
,
38
(
4
), pp.
319
340
. 10.1016/S0379-7112(02)00089-9
3.
Xu
,
Q.-q.
,
Yi
,
L.
,
Xu
,
Z.-s.
, and
Wu
,
D.-x.
,
2013
, “
Preliminary Study on Exhaust Efficiency of Smoke Management System in Tunnel Fires
,”
Procedia Eng.
,
52
, pp.
514
519
. 10.1016/j.proeng.2013.02.177
4.
Chow
,
W.
,
Wong
,
K.
, and
Chung
,
W.
,
2010
, “
Longitudinal Ventilation for Smoke Control in a Tilted Tunnel by Scale Modeling
,”
Tunn. Undergr. Space Technol.
,
25
(
2
), pp.
122
128
. 10.1016/j.tust.2009.10.001
5.
Zhou
,
T.
,
He
,
Y.
,
Lin
,
X.
,
Wang
,
X.
, and
Wang
,
J.
,
2017
, “
Influence of Constraint Effect of Sidewall on Maximum Smoke Temperature Distribution Under a Tunnel Ceiling
,”
Appl. Therm. Eng.
,
112
, pp.
932
941
. 10.1016/j.applthermaleng.2016.10.111
6.
Yang
,
D.
,
Liu
,
Y.
,
Zhao
,
C.
, and
Mao
,
S.
,
2017
, “
Multiple Steady States of Fire Smoke Transport in a Multi-branch Tunnel: Theoretical and Numerical Studies
,”
Tunn. Undergr. Space Technol.
,
61
, pp.
189
197
. 10.1016/j.tust.2016.10.009
7.
Khattri
,
S. K.
,
2017
, “
From Small-Scale Tunnel Fire Simulations to Predicting Fire Dynamics in Realistic Tunnels
,”
Tunn. Undergr. Space Technol.
,
61
, pp.
198
204
. 10.1016/j.tust.2016.10.010
8.
Chow
,
W.
,
Gao
,
Y.
,
Zhao
,
J.
,
Dang
,
J.
,
Chow
,
C. L.
, and
Miao
,
L.
,
2015
, “
Smoke Movement in Tilted Tunnel Fires With Longitudinal Ventilation
,”
Fire Saf. J.
,
75
, pp.
14
22
. 10.1016/j.firesaf.2015.04.001
9.
Du
,
T.
,
Yang
,
D.
,
Peng
,
S.
,
Liu
,
Y.
, and
Xiao
,
Y.
,
2016
, “
Performance Evaluation of Longitudinal and Transverse Ventilation for Thermal and Smoke Control in a Looped Urban Traffic Link Tunnel
,”
Appl. Therm. Eng.
,
96
, pp.
490
500
. 10.1016/j.applthermaleng.2015.11.062
10.
Mao
,
S.
, and
Yang
,
D.
,
2016
, “
One-Dimensional Analysis for Optimizing Smoke Venting in Tunnels by Combining Roof Vents and Longitudinal Ventilation
,”
Appl. Therm. Eng.
,
108
, pp.
1288
1297
. 10.1016/j.applthermaleng.2016.07.193
11.
Tanaka
,
F.
,
Majima
,
S.
,
Kato
,
M.
, and
Kawabata
,
N.
,
2015
, “
Performance Validation of a Hybrid Ventilation Strategy Comprising Longitudinal and Point Ventilation by a Fire Experiment Using a Model-scale Tunnel
,”
Fire Saf. J.
,
71
, pp.
287
298
. 10.1016/j.firesaf.2014.11.025
12.
Tunnel
,
A.
,
2004
, “
Va gverket
,” Publikation, Borla nge, p.
124
.
13.
Association
,
N. F. P.
,
2011
, “
Standard for Road Tunnels, Bridges, and Other Limited Access Highways
,” NFPA, NFPA 502.
14.
Ingason
,
H.
, and
Lönnermark
,
A.
,
2005
, “
Heat Release Rates From Heavy Goods Vehicle Trailer Fires in Tunnels
,”
Fire Saf. J.
,
40
(
7
), pp.
646
668
. 10.1016/j.firesaf.2005.06.002
15.
Cheong
,
M. K.
,
Spearpoint
,
M. J.
, and
Fleischmann
,
C. M.
,
2008
, “
Design Fires for Vehicles in Road Tunnels
,”
7th International Conference on Performance-Based Codes and Fire Safety Design Methods
,
Auckland, New Zealand
,
Apr. 16–18
.
16.
Fluent
,
A.
,
2017
, “
ANSYS Fluent Theory Guide, Release 18.0. Ansys
,” Inc.
17.
Ingason
,
H.
, and
Lonnermark
,
A.
,
2004
, “
Large-scale Fire Tests in the Runehamar Tunnel-Heat Release Rate (HRR)
,” SP RAPPORT-STATENS PROVNINGSANSTALT, pp.
81
92
.
18.
Studiensgesellschaft Stahlanwendung, E.
,
1995
, “
Fires in Transport Tunnels: Report on Full-Scale Tests
,” EUREKA-Project EU499.
19.
Gonzales
,
R. H.
,
2008
,
"Diesel Exhaust Emission System Temperature Test," T&D Report 0851-1816P, U.S. Department of Agriculture
.
20.
Kandylas
,
I.
, and
Stamatelos
,
A.
,
1999
, “
Engine Exhaust System Design Based on Heat Transfer Computation
,”
Energy Convers. Manage.
,
40
(
10
), pp.
1057
1072
. 10.1016/S0196-8904(99)00008-4
21.
Franco
,
V.
,
Kousoulidou
,
M.
,
Muntean
,
M.
,
Ntziachristos
,
L.
,
Hausberger
,
S.
, and
Dilara
,
P.
,
2013
, “
Road Vehicle Emission Factors Development: A Review
,”
Atmos. Environ.
,
70
, pp.
84
97
. 10.1016/j.atmosenv.2013.01.006
22.
Colella
,
F.
,
Rein
,
G.
,
Borchiellini
,
R.
,
Carvel
,
R.
,
Torero
,
J. L.
, and
Verda
,
V.
,
2009
, “
Calculation and Design of Tunnel Ventilation Systems Using a Two-Scale Modelling Approach
,”
Build. Environ.
,
44
(
12
), pp.
2357
2367
. 10.1016/j.buildenv.2009.03.020
23.
Li
,
L.
,
Cheng
,
X.
,
Wang
,
X.
, and
Zhang
,
H.
,
2012
, “
Temperature Distribution of Fire-Induced Flow Along Tunnels Under Natural Ventilation
,”
J. Fire Sci.
,
30
(
2
), pp.
122
137
. 10.1177/0734904111428896
24.
Jin
,
T.
,
1997
, “
Studies on Human Behavior and Tenability in Fire Smoke
,”
Fire Saf. Sci.
,
5
, pp.
3
21
. 10.3801/IAFSS.FSS.5-3
25.
Mulholland
,
G. W.
, and
Croarkin
,
C.
,
2000
, “
Specific Extinction Coefficient of Flame Generated Smoke
,”
Fire Mater.
,
24
(
5
), pp.
227
230
. 10.1002/1099-1018(200009/10)24:5<227::AID-FAM742>3.0.CO;2-9
You do not currently have access to this content.