Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Indian onion producers experience significant economic losses as a result of the unpredictable fluctuations in onion prices during the harvesting and postharvest stages. To address these difficulties and increase farmers' earnings, the transformation of onions into value-added goods such as onion paste, onion powder, onion sauce, and onion oil has emerged as a possible option. The objective of this project is to create a smart solar drying system based on Internet of Things (IoT) technique specifically designed for the dehydration of recently harvested red onions. In April 2023, a series of five experimental tests were carried out, examining the effects of different onion slice thicknesses ranging from 2 mm to 4 mm, with intervals of 0.5 mm. Each trial consisted of running the dryer for a duration of 9 h, specifically from 9:00 a.m. to 6:00 p.m., throughout the daylight hours for three consecutive days. The experiment involved evaluating different drying characteristics, such as moisture content on dry and wet bases, shrinkage ratio, and thermal efficiency. The drying time required to achieve a 10% moisture level (w.b.) was reduced by 30.19%, 16.98%, 11.32%, and 3.77% when comparing a 4-mm slice thickness to thinner alternatives of 2 mm, 2.5 mm, 3 mm, and 3.5 mm, respectively. The dryer had a superior thermal efficiency of 27.89% when the thickness was 2 mm, in contrast to 19.50% when the thickness was 4 mm. Significantly, onions that were dehydrated from slices measuring 2 mm and 2.5 mm in thickness showed exceptional suitability for the production of powdered onion.

References

1.
Saxena
,
G.
, and
Gaur
,
M. K.
,
2020
, “
Performance Evaluation and Drying Kinetics for Solar Drying of Hygroscopic Crops in Vacuum Tube Assisted Hybrid Dryer
,”
ASME J. Sol. Energy Eng.
,
142
(
5
), p.
051009
.
2.
Lamnatou
,
C.
,
Papanicolaou
,
E.
,
Belessiotis
,
V.
, and
Kyriakis
,
N.
,
2012
, “
Experimental Investigation and Thermodynamic Performance Analysis of a Solar Dryer Using an Evacuated-Tube Air Collector
,”
Appl. Energy
,
94
, pp.
232
243
.
3.
Mitra
,
J.
,
Shrivastava
,
S. L.
, and
Rao
,
P. S.
,
2012
, “
Onion Dehydration: A Review
,”
J. Food Sci. Technol.
,
49
(
3
), pp.
267
277
.
4.
Hadj Ammar
,
M. A.
,
Attia
,
M. E. H.
,
Laouini
,
A.
,
Zine
,
A.
,
Salhi
,
K.
,
Hariz
,
A.
, and
Kumar
,
A.
,
2024
, “
Design and Performance Evaluation of a Novel Solar Dryer for Drying Potatoes in the Eastern Algerian Sahara
,”
ASME J. Sol. Energy Eng.
,
146
(
3
), p.
031008
.
5.
Horticulture Statistics Division, Department of Agriculture, Cooperation and Farmers Welfare, Ministry of Agriculture and Farmers Welfare, Government of India
,
2017
, Horticultural Statistics at a Glance 2017: Monthly Report Onion. New Delhi, India.
6.
Sandali
,
M.
,
Boubekri
,
A.
, and
Mennouche
,
D.
,
2019
, “
Improvement of the Thermal Performance of Solar Drying Systems Using Different Techniques: A Review
,”
ASME J. Sol. Energy Eng.
,
141
(
5
), p.
050802
.
7.
Singh
,
D.
,
Mishra
,
S.
, and
Shankar
,
R.
,
2022
, “
Experimental Investigation and Drying Kinetics of Mixed Type Solar Dryer With Thermal Energy Storage Material for Drying of Apple Slices
,”
Energy Sour., Part A: Recov. Utiliz. Environ. Eff.
,
44
(
2
), pp.
4763
4782
.
8.
Fernandes
,
L.
,
Fernandes
,
J. R.
, and
Tavares
,
P. B.
,
2022
, “
Design of a Friendly Solar Food Dryer for Domestic Over-Production
,”
Solar
,
2
(
4
), pp.
495
508
.
9.
Krabch
,
H.
,
Tadili
,
R.
, and
Bargach
,
M.
,
2022
, “
Indirect Solar Dryer With a Single Compartment for Food Drying. Application to the Drying of the Pear
,”
Sol. Energy
,
240
, pp.
131
139
.
10.
Gopinath
,
G. R.
,
Muthuvel
,
S.
,
Muthukannan
,
M.
,
Sudhakarapandian
,
R.
,
Praveen Kumar
,
B.
,
Santhan Kumar
,
C.
, and
Thanikanti
,
S. B.
,
2022
, “
Design, Development, and Performance Testing of Thermal Energy Storage Based Solar Dryer System for Seeded Grapes
,”
Sustain. Energy Technol. Assess.
,
51
, p.
101923
.
11.
Dharmadurai
,
P. L.
,
Vasanthaseelan
,
S.
,
Bharathwaaj
,
R.
,
Dharmaraj
,
V.
,
Gnanasekaran
,
K.
,
Balaji
,
D.
, and
Sathyamurthy
,
R.
,
2022
, “
A Comparative Study on Solar Dryer Using External Reflector for Drying Grapes
,”
Mater. Today: Proc.
,
50
(
5
), pp.
552
559
.
12.
Bhanu
,
A. S.
,
Elavarasan
,
E.
,
Natarajan
,
S. K.
,
Anandu
,
A.
, and
Senin
,
H. M.
,
2021
, “
Experimental Investigation of Drying Kinetics of Poovan Banana Under Forced Convection Solar Drying
,”
Current Advances in Mechanical Engineering: Select Proceedings of ICRAMERD 2020
,
Bhubaneswar, Odisha, India
,
July 24–25
, 2020, Springer, Singapore, pp.
621
631
.
13.
Kushwah
,
A.
,
Kumar
,
A.
, and
Gaur
,
M. K.
,
2023
, “
Optimization of Drying Parameters for Hybrid Indirect Solar Dryer for Banana Slices Using Response Surface Methodology
,”
Process Saf. Environ. Prot.
,
170
, pp.
176
187
.
14.
Rani
,
P.
, and
Tripathy
,
P. P.
,
2022
, “
Investigating Shrinkage Corrected Drying Characteristics, Rehydration, Color Profile and Microstructural Evolution During Solar Drying of Pineapple Slices
,”
J. Food Process Eng.
,
45
(
8
), p.
e14036
.
15.
Malakar
,
S.
,
Arora
,
V. K.
,
Nema
,
P. K.
, and
Yadav
,
D. K.
,
2023
, “
Development of Infrared-Assisted Hybrid Solar Dryer for Drying Pineapple Slices: Investigation of Drying Characteristics, Mass Transfer Parameters, and Quality Attributes
,”
Innovative Food Sci. Emerging Technol.
,
88
, p.
103437
.
16.
Ekka
,
J. P.
,
Muthukumar
,
P.
,
Bala
,
K.
,
Kanaujiya
,
D. K.
, and
Pakshirajan
,
K.
,
2021
, “
Performance Studies on Mixed-Mode Forced Convection Solar Cabinet Dryer Under Different Air Mass Flow Rates for Drying of Cluster Fig
,”
Sol. Energy
,
229
, pp.
39
51
.
17.
Lad
,
P.
,
Kumar
,
R.
,
Saxena
,
R.
, and
Patel
,
J.
,
2023
, “
Numerical Investigation of Phase Change Material Assisted Indirect Solar Dryer for Food Quality Preservation
,”
Int. J. Thermofluids
,
18
, p.
100305
.
18.
Kokate
,
Y. D.
,
Baviskar
,
P. R.
,
Baviskar
,
K. P.
,
Deshmukh
,
P. S.
,
Chaudhari
,
Y. R.
, and
Amrutkar
,
K. P.
,
2023
, “
Design, Fabrication and Performance Analysis of Indirect Solar Dryer
,”
Mater. Today: Proc.
,
77
(
3
), pp.
748
753
.
19.
Deokar
,
V. H.
,
Bindu
,
R. S.
, and
Potdar
,
S. S.
,
2021
, “
Active Cooling System for Efficiency Improvement of PV Panel and Utilization of Waste-Recovered Heat for Hygienic Drying of Onion Flakes
,”
J. Mater. Sci.: Mater. Electron.
,
32
(
2
), pp.
2088
2102
.
20.
Attkan
,
A. K.
,
Alam
,
M. S.
,
Raleng
,
A.
, and
Yadav
,
Y. K.
,
2021
, “
Drying Kinetics of Onion (Allium cepa L.) Slices Using Low-Humidity Air Assisted Hybrid Solar Dryer
,”
J. Agric. Eng.
,
58
(
3
), pp.
262
273
.
21.
Malakar
,
S.
,
Arora
,
V. K.
, and
Nema
,
P. K.
,
2021
, “
Design and Performance Evaluation of an Evacuated Tube Solar Dryer for Drying Garlic Clove
,”
Renew. Energy
,
168
, pp.
568
580
.
22.
Kushwah
,
A.
,
Kumar
,
A.
,
Gaur
,
M. K.
, and
Pal
,
A.
,
2021
, “
Garlic Dehydration Inside Heat Exchanger-Evacuated Tube Assisted Drying System: Thermal Performance, Drying Kinetic and Color Index
,”
J. Stored Prod. Res.
,
93
, p.
101852
.
23.
Sabareesh
,
V.
,
Milan
,
K. J.
,
Muraleedharan
,
C.
, and
Rohinikumar
,
B.
,
2021
, “
Improved Solar Drying Performance by Ultrasonic Desiccant Dehumidification in Indirect Forced Convection Solar Drying of Ginger With Phase Change Material
,”
Renew. Energy
,
169
, pp.
1280
1293
.
24.
Shahi
,
N. C.
,
Kohli
,
D.
,
Kumar
,
P.
,
Tamta
,
M.
, and
Arya
,
P.
,
2022
, “
Drying Kinetics and Activation Energy for Solar Drying of Ginger Slices
,”
J. Spices Aromatic Crops
,
31
(
1
), pp.
15
24
.
25.
Malakar
,
S.
,
Alam
,
M.
, and
Arora
,
V. K.
,
2022
, “
Evacuated Tube Solar and Sun Drying of Beetroot Slices: Comparative Assessment of Thermal Performance, Drying Kinetics, and Quality Analysis
,”
Sol. Energy
,
233
, pp.
246
258
.
26.
Mugi
,
V. R.
,
Gilago
,
M. C.
, and
Chandramohan
,
V. P.
,
2023
, “
Performance Analysis and Drying Kinetics of Beetroot Slices Dried in an Innovative Solar Dryer Without and With Thermal Storage Unit
,”
Energy Sour., Part A: Recov. Utiliz. Environ. Eff.
,
45
(
1
), pp.
1900
1917
.
27.
Ahmad
,
A.
,
Prakash
,
O.
,
Kumar
,
A.
, and
Hussain
,
M. S.
,
2023
, “
Drying Kinetics and Performance Analysis of Thermal Storage-Based Hybrid Greenhouse Dryer for Uniform Drying of Tomato Flakes
,”
ASME J. Therm. Sci. Eng. Appl.
,
15
(
5
), p.
050908
.
28.
Suherman
,
S.
,
Rilna
,
R. M.
,
Afriandi
,
N.
,
Susanto
,
E. E.
, and
Hadiyanto
,
H.
,
2023
, “
Drying of Tomato Slices Using Solar Drying Method
,”
AIP Conf. Proc.
,
2667
(
1
), pp.
287
295
.
29.
Vigneshkumar
,
N.
,
Venkatasudhahar
,
M.
,
Manoj Kumar
,
P.
,
Ramesh
,
A.
,
Subbiah
,
R.
,
Stalin
,
P. M. J.
,
Suresh
,
V.
, et al
,
2021
, “
Investigation on Indirect Solar Dryer for Drying Sliced Potatoes Using Phase Change Materials (PCM)
,”
Mater. Today: Proc.
,
47
(
15
), pp.
5233
5238
.
30.
Pandiaraj
,
S.
,
Ayyasamy
,
T.
,
Hasanuzzaman
,
M.
,
Angappan
,
G.
,
Muthusamy
,
S.
,
Panchal
,
H.
,
Lamba
,
R.
,
Ezekwem
,
C.
,
Munir
,
M.
, and
Sundararajan
,
S. C. M.
,
2022
, “
An Experimental Investigation on a Locally Fabricated Dryer Integrated With a Novel Solar Air Heater for the Drying of Potato Slices
,”
Energy Sour., Part A: Recov. Utiliz. Environ. Eff.
,
44
(
4
), pp.
9811
9826
.
You do not currently have access to this content.