Abstract

Solar thermal-driven vapor absorption system has proven to be a feasible and viable cooling source. However, most reported installations for milk chilling applications are equipped with an auxiliary heater that consumes significant electricity/gas, making it economically unviable. In this study, the experimental investigation of the performance of a solar-powered vapor absorption chiller has been reported for milk chilling applications as per standard ISO 5708–2 II. It has been identified that the performance of the vapor absorption chiller is quite uncertain and underperforming while operated with the heat directly fed through the evacuated tube compound parabolic concentrator solar field due to diurnal and seasonal variations of solar radiation intensity. Therefore, hot thermal energy storage integration has been studied and analyzed in this study. The performance of the vapor absorption chiller has improved significantly with the use of hot thermal energy storage in the solar circuit as the coefficient of performance (COP) of the vapor absorption chiller improved up to 0.4, which was earlier around 0.25. Further, hot thermal energy storage provides better thermal management to increase the productivity and performance of the vapor absorption chiller, and the cooling time for the first milking is 2 h and 45 min. The performance of the vapor absorption chiller enhanced further up to 0.52 when supplied heat entirely with thermal energy storage. The energy efficiency ratio has a maximum value of 6.1, with an average of 4.3, whereas the thermal COP has an average of 0.35 and a maximum value of 0.52 when run with thermal energy storage alone.

References

1.
Shirazi
,
A.
,
Taylor
,
R. A.
,
Morrison
,
G. L.
, and
White
,
S. D.
,
2018
, “
Solar-Powered Absorption Chillers: A Comprehensive and Critical Review
,”
Energy Convers. Manage.
,
171
, pp.
59
81
.
2.
Kim
,
D. S.
, and
Infante Ferreira
,
C. A.
,
2008
, “
Solar Refrigeration Options—A State-of-the-Art Review
,”
Int. J. Refrig.
,
31
(
1
), pp.
3
15
.
3.
Zhai
,
X. Q.
,
Qu
,
M.
,
Li
,
Y.
, and
Wang
,
R. Z.
,
2011
, “
A Review for Research and New Design Options of Solar Absorption Cooling Systems
,”
Renew. Sustain. Energy Rev.
,
15
(
9
), pp.
4416
4423
.
4.
Fong
,
K. F.
,
Chow
,
T. T.
,
Lee
,
C. K.
,
Lin
,
Z.
, and
Chan
,
L. S.
,
2011
, “
Solar Hybrid Cooling System for High-Tech Offices in Subtropical Climate—Radiant Cooling by Absorption Refrigeration and Desiccant Dehumidification
,”
Energy Convers. Manage.
,
52
(
8–9
), pp.
2883
2894
.
5.
Said
,
S. A. M.
,
El-shaarawi
,
M. A. I.
, and
Siddiqui
,
M. U.
,
2015
, “
Analysis of a Solar Powered Absorption System
,”
Energy Convers. Manage.
,
97
, pp.
243
252
.
6.
Lu
,
Z. S.
,
Wang
,
R. Z.
,
Xia
,
Z. Z.
,
Lu
,
X. R.
,
Yang
,
C. B.
,
Ma
,
Y. C.
, and
Ma
,
G. B.
,
2013
, “
Study of a Novel Solar Adsorption Cooling System and a Solar Absorption Cooling System With New CPC Collectors
,”
Renew. Energy
,
50
, pp.
299
306
.
7.
Ali
,
A. H. H.
,
Noeres
,
P.
, and
Pollerberg
,
C.
,
2008
, “
Performance Assessment of an Integrated Free Cooling and Solar Powered Single-Effect Lithium Bromide-Water Absorption Chiller
,”
Sol. Energy
,
82
(
11
), pp.
1021
1030
.
8.
Li
,
M.
,
Xu
,
C.
,
Hassanien
,
R. H. E.
,
Xu
,
Y.
, and
Zhuang
,
B.
,
2016
, “
Experimental Investigation on the Performance of a Solar Powered Lithium Bromide–Water Absorption Cooling System
,”
Int. J. Refrig.
,
71
, pp.
46
59
.
9.
Pongtornkulpanich
,
A.
,
Thepa
,
S.
,
Amornkitbamrung
,
M.
, and
Butcher
,
C.
,
2008
, “
Experience With Fully Operational Solar-Driven 10-Ton LiBr/H2O Single-Effect Absorption Cooling System in Thailand
,”
Renew. Energy
,
33
(
5
), pp.
943
949
.
10.
Shekhawat
,
J. S.
,
Sharma
,
D.
,
Poonia
,
M. P.
, and
Singh
,
H. R.
,
2019
, “
Development and Operationalization of Solar-Assisted Rapid Bulk Milk Cooler
,”
ASME J. Sol. Energy Eng.
,
141
(
4
), p.
041014
.
11.
Aktemur
,
C.
, and
Ozturk
,
I. T.
,
2023
, “
Thermodynamic Optimization of Utilization of LiBr + LiCl/H2O Solution Mixture on a Single-Effect Absorption Chiller Driven by Solar Energy
,”
ASME J. Sol. Energy Eng.
,
145
(
5
), p.
051003
.
12.
Singh
,
G.
, and
Das
,
R.
,
2018
, “
Energy Saving Potential of a Combined Solar and Natural Gas-Assisted Vapor Absorption Building Cooling System
,”
ASME J. Sol. Energy Eng.
,
141
(
1
), p.
011016
.
13.
Alghamdi
,
A.
, and
Sherif
,
S. A.
,
2023
, “
Thermodynamic Analysis and Modeling of a Novel Solar Absorption Cogeneration System With an Adjustable Cooling-to-Power Ratio
,”
ASME J. Sol. Energy Eng.
,
145
(
4
), p.
041001
.
14.
Hang
,
Y.
,
Qu Ming
,
M.
, and
Zhao
,
F.
,
2011
, “
Economical and Environmental Assessment of an Optimized Solar Cooling System for a Medium-Sized Benchmark Office Building in Los Angeles, California
,”
Renew. Energy
,
36
(
2
), pp.
648
658
.
15.
Li
,
Z. F.
, and
Sumathy
,
K.
,
2000
, “
Technology Development in the Solar Absorption Air-Conditioning Systems
,”
Renew. Sustain. Energy Rev.
,
4
(
3
), pp.
267
293
.
16.
Alva
,
L. H.
, and
González
,
J. E.
,
2002
, “
Simulation of an Air-Cooled Solar-Assisted Absorption Air Conditioning System
,”
ASME J. Sol. Energy Eng.
,
124
(
3
), pp.
276
282
.
17.
Florides
,
G. A.
,
Kalogirou
,
S. A.
,
Tassou
,
S. A.
, and
Wrobel
,
L. C.
,
2002
, “
Modelling and Simulation of an Absorption Solar Cooling System for Cyprus
,”
Sol. Energy
,
72
(
1
), pp.
43
51
.
18.
Zambrano
,
D.
,
Bordons
,
C.
,
Garcia-Gabin
,
W.
, and
Camacho
,
E. F.
,
2008
, “
Model Development and Validation of a Solar Cooling Plant
,”
Int. J. Refrig.
,
31
(
2
), pp.
315
327
.
19.
Argiriou
,
A. A.
,
Balaras
,
C. A.
,
Kontoyiannidis
,
S.
, and
Michel
,
E.
,
2005
, “
Numerical Simulation and Performance Assessment of a Low Capacity Solar Assisted Absorption Heat Pump Coupled With a Sub-Floor System
,”
Sol. Energy
,
79
(
3
), pp.
290
301
.
20.
Al-Alili
,
A.
,
Islam
,
M. D.
,
Kubo
,
I.
,
Hwang
,
Y.
, and
Radermacher
,
R.
,
2012
, “
Modeling of a Solar Powered Absorption Cycle for Abu Dhabi
,”
Appl. Energy
,
93
, pp.
160
167
.
21.
Calise
,
F.
,
Dentice d’Accadia
,
M.
, and
Palombo
,
A.
,
2010
, “
Transient Analysis and Energy Optimization of Solar Heating and Cooling Systems in Various Configurations
,”
Sol. Energy
,
84
(
3
), pp.
432
449
.
22.
Duffie
,
J. A.
, and
Beckman
,
W. A.
,
2013
,
Solar Engineering of Thermal Processes
,
Wiley and Sons
,
Hoboken, NJ
.
23.
Ibrahim
,
N. I.
,
Al-Sulaiman
,
F. A.
, and
Ani
,
F. N.
,
2018
, “
Solar Absorption Systems With Integrated Absorption Energy Storage—A Review
,”
Renew. Sustain. Energy Rev.
,
82
(
1
), pp.
1602
1610
.
24.
Ibrahim
,
N. I.
,
Khan
,
M. M. A.
,
Mahbubul
,
I. M.
,
Saidur
,
R.
, and
Al-Sulaiman
,
F. A.
,
2017
, “
Experimental Testing of the Performance of a Solar Absorption Cooling System Assisted With Ice-Storage for an Office Space
,”
Energy Convers. Manage.
,
148
, pp.
1399
1408
.
25.
Chidambaram
,
L. A.
,
Ramana
,
A. S.
,
Kamaraj
,
G.
, and
Velraj
,
R.
,
2011
, “
Review of Solar Cooling Methods and Thermal Storage Options
,”
Renew. Sustain. Energy Rev.
,
15
(
6
), pp.
3220
3228
.
26.
Mugnier
,
D.
,
Neyer
,
D.
, and
White
,
S. D.
,
2017
,
The Solar Cooling Design Guide—Case Studies of Successful Solar Air Conditioning Design
,
Wilhelm Ernst & Sohn
,
Berlin, Germany
.
27.
Kohlenbach
,
P.
,
Dennis
,
M.
, and
Director
,
I.
,
2010
, “
Solar Cooling in Australia: The Future of Air-Conditioning?
,”
RCC Koude en Luchtbehandeling
,
105
, pp.
15
18
.
28.
Beccali
,
M.
,
Cellura
,
M.
,
Finocchiaro
,
P.
,
Guarino
,
F.
,
Longo
,
S.
, and
Nocke
,
B.
,
2012
, “
Life Cycle Assessment Performance Comparison of Small Solar Thermal Cooling Systems With Conventional Plants Assisted With Photovoltaics
,”
Energy Proc.
,
30
, pp.
893
903
.
29.
Shirazi
,
A.
,
Taylor
,
R. A.
,
White
,
S. D.
, and
Morrison
,
G. L.
,
2016
, “
Multi-Effect Absorption Chillers Powered by the Sun: Reality or Reverie
,”
Energy Proc.
,
91
, pp.
844
856
.
30.
Sharma
,
D. K.
,
Sharma
,
D.
, and
Ali
,
A. H. H.
,
2020
, “
A State of the Art on Solar-Powered Vapor Absorption Cooling Systems Integrated With Thermal Energy Storage
,”
Environ. Sci. Pollut. Res.
,
27
(
1
), pp.
158
189
.
31.
Edwin
,
M.
, and
Sekhar
,
S. J.
,
2015
, “
Thermal Performance of Milk Chilling Units in Remote Villages Working With the Combination of Biomass, Biogas and Solar Energies
,”
Energy
,
91
, pp.
842
851
.
32.
Abdallah
,
S. E.
, and
Basiouny
,
M. A.
,
2012
, “
Evaluating the Performance of a Bulk-Milk Cooler on a Dairy Farm
,”
AMA, Agric. Mech. Asia, Africa Latin America
,
43
(
3
), pp.
22
31
.
33.
NDDB
,
2009
, “
Applicable Manufacturing/ Design Code 3.2.1 Bulk Milk Cooler (BMC)
.” https://www.nddb.coop/sites/default/files/pdfs/BMCU SPECS 1-2 KL.pdf.
34.
Thür
,
A.
,
Jaehnig
,
D.
,
Núñez
,
T.
,
Wiemken
,
E.
,
Helm
,
M.
,
Mugnier
,
D.
,
Finocchiaro
,
P.
, and
Nocke
,
B.
,
2010
, “
Monitoring Program of Small Scale Solar Heating and Cooling Systems Within IEA-SHC Task 38—Procedure and First Results
,”
Eurosun 2010 Conference Graz Proceedings
,
Graz, Austria
,
Sept. 28–Oct. 1
.
35.
Arat
,
H.
,
Arslan
,
O.
,
Ercetin
,
U.
, and
Akbulut
,
A.
,
2021
, “
Experimental Study on Heat Transfer Characteristics of Closed Thermosyphon at Different Volumes and Inclination Angles for Variable Vacuum Pressures
,”
Case Stud. Therm. Eng.
,
26
, p.
101117
.
36.
Rosen
,
M. A.
, and
Dincer
,
I.
,
2003
, “
Exergoeconomic Analysis of Power Plants Operating on Various Fuels
,”
Appl. Therm. Eng.
,
23
(
6
), pp.
643
658
.
37.
Dincer
,
I.
, and
Rosen
,
M. A.
,
2007
,
Exergy: Energy, Environment and Sustainable Development
,
Elsevier
,
New York
.
38.
Sharma
,
D. K.
,
Sharma
,
D.
, and
Ali
,
A. H. H.
,
2023
, “
Energy Conversion and Management : X Optimization and Thermo-Economic Performance of a Solar-Powered Vapor Absorption Cooling System Integrated With Sensible Thermal Energy Storage
,”
Energy Convers. Manage.:X
,
20
, p.
100440
.
You do not currently have access to this content.