The experimental method is extensively used to determine the temperature of a photovoltaic (PV) module at different hours of a day. In this method, the module temperature is measured using a temperature sensor mounted on the back of PV module. However, the experimental measurements have high cost and are not applicable everywhere. In this study, an optical–thermal model was used to predict all the PV module layer temperatures in two cases: tilted toward the south and fixed on a two-axis sun tracker. The impact of accurate consideration of the wind velocity and the ambient temperature on the PV module temperature was the main strength of the present simulation. This was carried out testing several correlations for prediction of convection heat transfer coefficient in the modeling process. The front and back layer temperatures as well as the silicon (Si) layer temperature of PV module were separately determined. To verify the results of the simulation, the temperatures of four PV modules measured in four different locations of the world, namely, China, Germany, Australia, and Brazil, were used. The results showed that the present study predicts the temperature of PV module more accurately compared to the previous studies. It was also shown that the average temperature errors between the measured and the predicted temperatures relative to the maximum module temperature were 2.19%, 2.3%, and 2.85%, for Australia, Brazil, and Germany, respectively.

References

1.
Hoang
,
P.
,
Bourdin
,
V.
,
Liu
,
Q.
,
Caruso
,
G.
, and
Archambault
,
V.
,
2014
, “
Coupling Optical and Thermal Models to Accurately Predict PV Panel Electricity Production
,”
Sol. Energy Mater. Sol. Cells
,
125
, pp.
325
338
.
2.
Hamou
,
S.
,
Zine
,
S.
, and
Abdellah
,
R.
,
2014
, “
Efficiency of PV Module Under Real Working Conditions
,”
Energy Procedia
,
50
, pp.
553
558
.
3.
Kaplani
,
E.
, and
Kaplanis
,
S.
,
2014
, “
Thermal Modelling and Experimental Assessment of the Dependence of PV Module Temperature on Wind Velocity and Direction, Module Orientation and Inclination
,”
Sol. Energy
,
107
, pp.
443
460
.
4.
Sjerps-Koomen
,
E. A.
,
Alsema
,
E. A.
, and
Turkenburg
,
W. C.
,
1996
, “
A Simple Model for PV Module Reflection Losses Under Field Condition
,”
Sol. Energy
,
57
(
6
), pp.
421
432
.
5.
Krauter
,
S.
, and
Hanitsch
,
R.
,
1996
, “
Actual Optical and Thermal Performance of PV-Modules
,”
Sol. Energy Mater. Sol. Cells
,
41/42
, pp.
557
574
.
6.
Fraidenraich
,
N.
, and
Vilela
,
O. C.
,
2000
, “
Exact Solution for Multilayer Optical Structures Application to PV Modules
,”
Sol. Energy
,
69
(
5
), pp.
357
362
.
7.
Yamada
,
T.
,
Nakamura
,
H.
,
Sugiura
,
T.
,
Sakuta
,
K.
, and
Kurokawa
,
K.
,
2001
, “
Reflection Loss Analysis by Optical Modeling of PV Module
,”
Sol. Energy Mater. Sol. Cells
,
67
(
1–4
), pp.
405
413
.
8.
Notton
,
G.
,
Cristofari
,
C.
,
Mattei
,
M.
, and
Poggi
,
P.
,
2005
, “
Modelling of a Double-Glass Photovoltaic Module Using Finite Differences
,”
Appl. Therm. Eng.
,
25
(
18
), pp.
2854
2877
.
9.
Mattei
,
M.
,
Notton
,
G.
,
Cristofari
,
C.
,
Muselli
,
M.
, and
Poggi
,
P.
,
2006
, “
Calculation of the Polycrystalline PV Module Temperature Using a Simple Method of Energy Balance
,”
Renewable Energy
,
31
(
4
), pp.
553
567
.
10.
Lu
,
Z. H.
, and
Yao
,
Q.
,
2006
, “
Energy Analysis of Silicon Solar Cell Modules Based on an Optical Model for Arbitrary Layers
,”
Sol. Energy
,
81
(
5
), pp.
636
647
.
11.
Huang
,
J.
,
Yang
,
P. E.
,
Lin
,
Y. P.
,
Lin
,
B. Y.
,
Chen
,
H. J.
,
Lai
,
R. C.
, and
Cheng
,
J. S.
,
2011
, “
Solar Cell Junction Temperature Measurement of PV Module
,”
Sol. Energy
,
85
(
2
), pp.
388
392
.
12.
Krauter
,
S.
,
2006
,
Solar Electric Power Generation-Photovoltaic Energy Systems
,
Springer
,
Berlin
.
13.
Duffie
,
J. A.
, and
Beckman
,
W. A.
,
1980
,
Solar Engineering on Thermal Processes
, 2nd ed.,
Wiley
,
New York
.
14.
SoDa, 2015, “Solar Energy Services for Professionals,” http://www.soda-is.com/eng/services/services_radiation_free_eng.php
15.
Yang
,
X. R.
,
1982
,
Handbook of Radiation View Factor
,
National Defence Industry Press
,
Beijing
, pp.
119
120
(in Chinese).
16.
Swinbank
,
W. C.
,
1963
, “
Long-Wave Radiation From Clear Skies
,”
Q. J. R. Meteorol. Soc.
,
89
(
381
), pp.
339
348
.
17.
Zondag
,
H. A.
,
De Vries
,
D. W.
,
Van Helden
,
W. G. J.
,
Van Zolingen
,
R. J. C.
, and
Van Steenhoven
,
A. A.
,
2003
, “
The Yield of Different Combined PV-Thermal Collector Designs
,”
Sol. Energy
,
74
(
3
), pp.
253
269
.
18.
Incropera
,
F. P.
,
DeWitt
,
S. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
2007
,
Fundamentals of Heat and Mass Transfer
, 6th ed.,
Wiley
,
Hoboken, NJ
.
19.
Fuji
,
T.
, and
Imura
,
H.
,
1972
, “
Natural Convection Heat Transfer From a Plate With Arbitrary Inclination
,”
Heat Mass Transfer
,
15
(
4
), pp.
755
767
.
20.
Radziemska
,
E.
,
2003
, “
Thermal Performance of Si and GaAs Based Solar Cells and Modules: A Review
,”
Prog. Energy Combust. Sci.
,
29
(
5
), pp.
407
424
.
21.
Test
,
F. L.
,
Lessmann
,
R. C.
, and
Johary
,
A.
,
1981
, “
Heat Transfer During Wind Flow Over Rectangular Bodies In the Natural Environment
,”
ASME J. Heat Transfer
,
103
(
2
), pp.
262
267
.
22.
Sharples
,
S.
, and
Charlesworth
,
P. S.
,
1998
, “
Full-Scale Measurements of Wind-Induced Convective Heat Transfer From a Roof-Mounted Flat Plate Solar Collector
,”
Sol. Energy
,
62
(
2
), pp.
69
77
.
23.
Loveday
,
D. L.
, and
Taki
,
A. H.
,
1996
, “
Convective Heat Transfer Coefficient at a Plane Surface on a Full-Scale Building Facade
,”
Heat Mass Transfer
,
39
(
8
), pp.
1729
1742
.
24.
VDI—Verband Deutscher Ingenieure
, ed.,
1991
,
VDI-Wärmeatlas
, 6th ed.,
VDI
,
Düsseldorf, Germany
.
25.
Merker
,
G. P.
,
1987
,
Konvektive Wärmeübertragung
,
Springer
,
Berlin
.
26.
Krauter
,
S.
,
2004
, “
Increased Electrical Yield Via Water Flow Over the Front of Photovoltaic Panels
,”
Energy Mater. Sol. Cells
,
82
(
1–2
), pp.
31
137
.
27.
Krauter
,
S.
, and
Ochs
,
F.
,
2004
, “
Integrated Solar Home System
,”
Renewable Energy
,
29
(
2
), pp.
153
164
.
28.
da Silva, W. P.,
2011
, xyExtract Graph Digitizer 5.1, http://xyextract-graph-digitizer.soft112.com
29.
Zhao
,
C.
, and
Cui
,
R.
,
2003
, “
Technical Research and Development of Solar Energy Building Materials (I): Thermal Investigation of Integrated PV Roof
,”
Acta Energ. Sol. Sin.
,
24
, pp.
352
356
.
30.
Clear
,
R. D.
,
Gartland
,
L.
, and
Winkelmann
,
F. C.
,
2003
, “
An Empirical Correlation for the Outside Convective Air–Film Coefficient for Horizontal Roofs
,”
Energy Build.
,
35
(
8
), pp.
797
811
.
31.
Karava
,
P.
,
Jubayer
,
C. M.
, and
Savory
,
E.
,
2011
, “
Numerical Modelling of Forced Convective Heat Transfer From the Inclined Windward Roof of an Isolated Low-Rise Building With Application to Photovoltaic/Thermal Systems
,”
Appl. Therm. Eng.
,
31
(
11–12
), pp.
1950
1963
.
You do not currently have access to this content.