Current heat transfer fluids for concentrated solar power applications are limited by their high temperature stability. Other fluids that are capable of operating at high temperatures have very high melting points. The present work is aimed at characterizing potential solar heat transfer fluid candidates that are likely to be thermally stable (up to 500 °C) with a lower melting point (∼100 °C). Binary and ternary mixtures of nitrates have the potential for being such heat transfer fluids. To characterize such eutectic media, both experimental measurements and analytical methods resulting in phase diagrams and other properties of the fluids are essential. Solidus and liquidus data have been determined using a differential scanning calorimeter over the range the compositions for each salt system and mathematical models have been derived using Gibbs Energy minimization. The Gibbs models presented in this paper sufficiently fit the experimental results as well as providing accurate predictions of the eutectic compositions and temperatures for each system. The methods developed here are expected to have broader implications in the identification of optimizing new heat transfer fluids for a wide range of applications, including solar thermal power systems.

References

1.
Janz
,
G. J.
,
Allen
,
C. B.
,
Bansal
,
N. P.
,
Murphy
,
R. M.
and
Tomkins
,
R. P. T.
,
1979
, “
Physical Properties Data Compilation Relevant to Energy Storage II. Molten Salts: Data on Single and Multi-Component Salt Systems
,”
NSRDS—National Standard Reference Data System
.
2.
Nissen
,
D. A.
, and
Meeker
,
D. E.
,
1983
, “
Nitrate/Nitrite Chemistry in Sodium Nitrate-Potassium Nitrate Melts
,”
Inorg. Chem.
,
22
(
5
), pp.
716
721
.10.1021/ic00147a004
3.
Hale
,
M. J.
,
1999
, “
Solar II Performance Evaluation. National Renewable Energy Laboratory
,”
Proceedings of the 34th Intersociety Energy Conversion Engineering Conference
, Vancouver, Canada, August 1–5.
4.
Bradshaw
,
R. W.
, and
Meeker
,
D. E.
,
1990
, “
High-Temperature Stability of Ternary Nitrate Molten Salts for Solar Thermal Energy Systems
,”
Sol. Energy Mater. Sol. Cells
,
21
(
1
), pp.
51
60
.10.1016/0165-1633(90)90042-Y
5.
Kleppa
,
O. J.
, and
Hersh
,
L. S.
,
1961
, “
Heats of Mixing in Liquid Alkali Nitrate Systems
,”
J. Chem. Phys.
,
34
(
2
), pp.
351
358
.10.1063/1.1700955
6.
Kramer
,
C. M.
, and
Wilson
,
C. J.
,
1980
, “
The Phase Diagram of NaNO3-KNO3
,”
Thermochim. Acta
,
42
(
3
), pp.
253
264
.10.1016/0040-6031(80)85085-4
7.
Reddy
,
R.G.
,
2010
, “
Novel Molten Salts Thermal Energy Storage for Concentrating Solar Power Generation
,”
U.S. Department of Energy, Solar Energy Technologies Program Peer Review
, available at: http://www1.eere.energy.gov/solar/review_meeting/pdfs/prm2010_exec_summary.pdf
8.
Jayaraman
,
S.
,
Thompson
,
A. P.
, and
von Lilienfeld
,
O. A.
,
2011
, “
Molten Salt Eutectics From Atomistic Simulations
,”
Phys. Rev. E
,
84
(
3
), p.
030201
.10.1103/PhysRevE.84.030201
9.
Boettinger
,
W. J.
,
Kattner
,
U. R.
,
Won Moon
,
K.
, and
Perepezko
,
J.
,
2006
, “
NIST Recommended Practice Guide: DTA and Heat-Flux DSC Measurements of Alloy Melting and Freezing
,”
National Institute of Standards and Technology
.
10.
Zhang
,
X.
,
Tian
,
J.
,
Xu
,
K.
, and
Gao
,
Y.
,
2003
, “
Thermodynamic Evaluation of Phase Equilibria in NaNO3-KNO3 System
,”
J. Phase Equilib.
,
24
(
5
), pp.
441
446
.10.1361/105497103770330091
11.
Vallet
,
C.
,
1972
, “
Phase Diagrams and Thermodynamic Properties of Some Molten Nitrate Mixtures
,”
J. Chem. Thermodyn.
,
4
(
1
), pp.
105
114
.10.1016/S0021-9614(72)80013-2
12.
Campbell
,
A. N.
,
Kartzmark
,
E. M.
, and
Nagarajan
,
M. K.
,
1962
, “
The Binary (Anhydrous) Systems of NaNO3,-LiNO3, LiClO3-NaClO3, LiClO3-LiNO3, NaNO3-NaClO3 and the Quaternary System NaNO3,-LiNO3-LiClO3-NaClO3
,”
Can. J. Biochem.
,
40
(
7
), pp.
1258
1265
.10.1139/v62-194
13.
Zhang
,
X.
,
Xu
,
K.
, and
Gao
,
Y.
,
2002
, “
The Phase Diagram of LiNO3-KNO3
,”
Thermochim. Acta
,
385
(
1–2
), pp.
81
84
.10.1016/S0040-6031(01)00704-3
14.
Bergman
,
A. G.
, and
Nogoev
,
K.
,
1964
, “
The CO(NH2)2-LiNO3; K, Li, Na || NO3; and K, NH4, Na || NO3 Systems
,”
Russ. J. Inorg. Chem.
,
9
(
6
), pp.
771
773
.
15.
Mellor
,
J. W.
,
1922
,
A Comprehensive Treatise On Inorganic and Theoretical Chemistry
,
Longmans, Green and Co
.,
New York
, Vol.
2
.
16.
Bauer
,
T.
,
Laing
,
D.
, and
Tamme
,
R.
,
2011
, “
Recent Progress in Alkali Nitrate/Nitrite Developments for Solar Thermal Power Applications
,”
Molten Salts Chemistry and Technology
, MS9, Trondheim, Norway.
17.
Coscia
,
K.
,
Neti
,
S.
,
Oztekin
,
A.
,
Nelle
,
S.
,
Mohapatra
,
S.
, and
Elliot
,
T.
,
2012
, “
Ternary Molten Salt Heat Transfer Fluids for Energy Applications
,”
ASME 2012 Summer Heat Transfer Conference
,
Rio Grande, Puerto Rico, July 8–12, ASME Paper No. HT2012-58281
.
You do not currently have access to this content.