Abstract

The mechanical and metallurgical properties of the weld play the most important role in the performance of welds which needs to be enhanced. The superimposing external magnetic field to the welding arc provided wonderful and favorable results for improving the shape and properties of the weld. In this research, different configurations of specially designed electromagnets were used to investigate their effects on the weld characteristics of SA 516 grade 70 welds. It was observed that 0–0–S–N configuration yielded maximum penetration (3.92 mm) compared with other configurations as well as the conventional gas tungsten arc welding (GTAW) process. Tensile test, Charpy impact test and microhardness were performed to investigate the mechanical properties and microstructure analysis was used to determine the metallurgical properties of the weld joints. The results show that the tensile strength, impact strength, and microhardness of magnetically controlled GTAW (MC-GTAW) weld was 620 MPa, 275 J and 198 HV respectively which is 3.16%, 22.76%, and 1.51% higher than the weld produced by GTAW process. It has also been observed that electromagnetic stirring refined the microstructure of the weld pool. The average grain size of MC-GTAW weld was 31.035 μm whereas 42.558 μm average grain was obtained in conventional GTAW weld. The electromagnetic stirring enhanced the weld cooling rate resulting in the formation of more acicular ferrite which is desirable.

References

1.
Wu
,
H.
,
Chang
,
Y.
,
Lu
,
L.
, and
Bai
,
J.
,
2017
, “
Review on Magnetically Controlled Arc Welding Process
,”
Int. J. Adv. Manuf. Technol.
,
91
(
9–12
), pp.
4263
4273
.10.1007/s00170-017-0068-9
2.
Shakya
,
P.
,
Singh
,
K.
, and
Arya
,
H. K.
,
2023
, “
Influence of Magnets on Arc Shape and Bead Geometry in Gas Tungsten Arc Welding
,”
Mater. Manuf. Process.
,
38
(
4
), pp.
401
408
.10.1080/10426914.2022.2075890
3.
Pathak
,
D.
,
Pandey
,
S. P.
,
Singh
,
R. P.
, and
Balu
,
V.
,
2022
, “
Influence of External Axial Magnetic Field on Shielded Metal Arc Weld Properties for High Strength Low Alloy Steel
,”
Mater. Today Proc.
,
62
, pp.
2748
2754
.10.1016/j.matpr.2021.12.296
4.
Li
,
F.
,
Liu
,
Y.
,
Ke
,
W.
,
Jin
,
P.
,
Kong
,
H.
,
Chen
,
M.
, and
Sun
,
Q.
,
2022
, “
A Novel Pathway to Weld Forming Control and Microstructure Improvement of Duplex Stainless Steel Via Alternating Magnetic Field
,”
J. Manuf. Process.
,
80
, pp.
581
590
.10.1016/j.jmapro.2022.05.030
5.
Yin
,
X.
,
Gou
,
J.
,
Zhang
,
J.
, and
Sun
,
J.
,
2012
, “
Numerical Study of Arc Plasmas and Weld Pools for GTAW With Applied Axial Magnetic Fields
,”
J. Phys. D: Appl. Phys.
,
45
(
28
), p.
285203
.10.1088/0022-3727/45/28/285203
6.
Queiroz
,
A. V. D.
,
Fernandes
,
M. T.
,
Silva
,
L.
,
Demarque
,
R.
,
Xavier
,
C. R.
, and
Castro
,
J. A. D.
,
2020
, “
Effects of an External Magnetic Field on the Microstructural and Mechanical Properties of the Fusion Zone in TIG Welding
,”
Metals
,
10
(
6
), p.
714
.10.3390/met10060714
7.
Chen
,
C.
,
Li
,
W.
,
Du
,
W.
,
Liu
,
J.
, and
Zhang
,
H.
,
2022
, “
Feasibility Analysis of Standing Wave Ultrasonic - Axial Magnetic Field Hybrid for Controlling GTAW Arc Characteristics
,”
J. Manuf. Process.
,
80
, pp.
187
195
.10.1016/j.jmapro.2022.06.005
8.
Rozmus-Górnikowska
,
M.
,
Kusiński
,
J.
,
Cempura
,
G.
, and
Morgiel
,
J.
,
2023
, “
Microstructure and Phase Composition of Transition Zone Between Low Alloyed Steel Boiler Tube and an Austenitic Stainless Steel Weld Overlay Produced by Cold Metal Transfer Method
,”
Int. J. Pressure Vessels Piping
,
203
, p.
104951
.10.1016/j.ijpvp.2023.104951
9.
Liu
,
L.
,
Zhu
,
Y.
, and
Liu
,
R.
,
2022
, “
Influence of Cusp External Magnetic Field on Deposition Rate of Two-Electrode TIG Welding
,”
Int. J. Adv. Manuf. Technol.
,
119
(
9–10
), pp.
6549
6558
.10.1007/s00170-022-08706-2
10.
Arya
,
H. K.
,
Singh
,
K.
, and
Saxena
,
R. K.
,
2018
, “
Effect of Weld Cooling Rates on Mechanical and Metallurgical Properties of Submerged Arc Welded Pressure Vessel Steel
,”
ASME J. Pressure Vessel Technol.
,
140
(
4
), p.
041406
.10.1115/1.4040274
11.
Kang
,
K.
,
Liu
,
Y.
,
Li
,
J.
,
Liu
,
C.
,
Zhen
,
Z.
,
Wang
,
Y.
, and
Sun
,
Q.
,
2020
, “
Microstructure and Mechanical Properties of Al/Steel Butt Joint by Hybrid CMT Welding With External Axial Magnetic Field
,”
Materials
,
13
(
16
), p.
3601
.10.3390/ma13163601
12.
Kumar
,
P.
,
Sinha
,
A. N.
,
Hirwani
,
C. K.
,
Murugan
,
M.
,
Saravanan
,
A.
, and
Singh
,
A. K.
,
2021
, “
Effect of Welding Current in TIG Welding 304 L Steel on Temperature Distribution, Microstructure and Mechanical Properties
,”
J. Braz. Soc. Mech. Sci. Eng.
,
43
(
7
), pp.
1
20
.10.1007/s40430-021-03082-6
13.
Saini
,
S.
, and
Singh
,
K.
,
2022
, “
Waste to Wealth: Recycling of Steel Slag as Flux for the Submerged Arc Welding Process and Its Effect on Mechanical and Metallurgical Properties of Welds
,”
Proc. Inst. Mech. Eng., Part C
,
236
(
16
), pp.
8980
8990
.10.1177/09544062221089253
14.
Sharma
,
P.
,
Chattopadhyaya
,
S.
,
Singh
,
N. K.
,
Bogdan-Chudy
,
M.
, and
Krolczyk
,
G.
,
2020
, “
The Effect of an External Magnetic Field on the Aspect Ratio and Heat Input of Gas-Metal-Arc-Welded AZ31B Alloy Weld Joints Using a Response Surface Methodology
,”
Materials
13
(
22
), pp.
5269
5218
.10.3390/ma13225269
15.
Kumar Arya
,
H.
,
Singh
,
K.
, and
Saxena
,
R. K.
,
2017
, “
Cooling Time (t8/5) Model for Submerged Arc Welded Pressure Vessel Steel Using Dimensional Analysis
,”
ASME J. Pressure Vessel Technol.
,
139
(
6
), p.
061404
.10.1115/1.4038018
16.
Fan
,
H.
,
Liu
,
P.
,
Guo
,
X.
,
Wang
,
X.
, and
Wang
,
Y.
,
2023
, “
Microstructures and Properties of a Novel 115 mm Thick 08Cr9W3Co3VNbCuBN Heat-Resistant Steel Tube Joints Welded by Shielded Metal Arc Welding
,”
Int. J. Pressure Vessels Piping
,
202
, p.
104918
.10.1016/j.ijpvp.2023.104918
17.
Lee
,
W. S.
,
Lin
,
C. F.
, and
Chen
,
B. T.
,
2005
, “
Tensile Properties and Microstructural Aspects of 304 L Stainless Steel Weldments as a Function of Strain Rate and Temperature
,”
Proc. Inst. Mech. Eng., Part C
,
219
(
5
), pp.
439
451
.10.1243/095440605X17045
18.
Mohan Kumar
,
S.
,
Sankarapandian
,
S.
, and
Siva Shanmugam
,
N.
,
2020
, “
Investigations on Mechanical Properties and Microstructural Examination of Activated TIG-Welded Nuclear Grade Stainless Steel
,”
J. Braz. Soc. Mech. Sci. Eng.
,
42
(
6
), pp.
1
21
.10.1007/s40430-020-02393-4
19.
Yelamasetti
,
B.
,
Vardhan
,
T. V.
, and
Ramana
,
G. V.
,
2021
, “
Study of Metallurgical Changes and Mechanical Properties of Dissimilar Weldments Developed by Interpulse Current TIG Welding Technique
,”
Proc. Inst. Mech. Eng. Part C
,
235
(
16
), pp.
2985
2997
.10.1177/0954406220960780
20.
Wu
,
J.
,
Wray
,
P. J.
,
Garcia
,
C. I.
,
Hua
,
M.
, and
DeArdo
,
A. J.
,
2007
, “
On Achieving a Better Understanding of the Polygonal Ferrite Microstructure in If Steel Using Image Quality Analysis
,”
Mater. Manuf. Process.
,
22
(
2
), pp.
281
285
.10.1080/10426910601134179
21.
Goins
,
P. E.
,
Murdoch
,
H. A.
,
Hernández-Rivera
,
E.
, and
Tschopp
,
M. A.
,
2018
, “
Effect of Magnetic Fields on Microstructure Evolution
,”
Comput. Mater. Sci.
,
150
, pp.
464
474
.10.1016/j.commatsci.2018.04.034
You do not currently have access to this content.