Abstract

This paper presents a theoretical method to solve the free vibration and transient responses of a rectangular plate–cavity system. The spectral collocation method was used to solve the resonant frequencies and corresponding mode shapes of rectangular plates based on Kirchhoff thin plate and Mindlin–Reissner thick plate theories. A linear velocity potential function was employed to model the fluid pressure applied to the plate surface. Unlike in previous studies, it was not assumed that the wet-mode shapes were the same as the dry-mode ones. Rather, the wet modes were assumed to be the superposition of the dry modes; then, the resonant frequencies and corresponding mode shapes of the wet modes could be obtained by solving the equations of the coupled system by exploiting the orthogonality of dry modes. Using dry modes’ orthogonality and superposition of the wet modes, the transient responses of the rectangular plate–cavity system under impact loading can be solved. A method for estimating the resonant frequencies of the coupled system is proposed based on parametric studies to determine the influence of the fluid properties and plate materials on resonant frequencies. As a result, the resonant frequencies and transient responses obtained from the proposed theoretical methods are in excellent agreement with those obtained from finite element analysis.

References

1.
Ji
,
M.
, and
Inaba
,
K.
,
2021
, “
Efficient Theoretical and Numerical Methods for Solving Free Vibrations and Transient Responses of a Circular Plate Coupled With Fluid Subjected to Impact Loadings
,”
ASME J. Press. Vessel Technol.
,
143
(
5
), p.
051401
.10.1115/1.4050319
2.
Dowell
,
E. H.
, and
Voss
,
H. M.
,
1963
, “
The Effect of a Cavity on Panel Vibration
,”
AIAA J.
,
1
(
2
), pp.
476
477
.10.2514/3.1568
3.
Pretlove
,
A. J.
,
1965
, “
Free Vibrations of a Rectangular Panel Backed by a Closed Rectangular Cavity by a Closed Rectangular Cavity
,”
J. Sound Vib.
,
2
(
3
), pp.
197
209
.10.1016/0022-460X(65)90108-2
4.
Pretlove
,
A. J.
,
1966
, “
Forced Vibrations of a Rectangular Panel Backed by a Closed Rectangular Cavity
,”
J. Sound Vib.
,
3
(
3
), pp.
252
261
.10.1016/0022-460X(66)90094-0
5.
Pretlove
,
A. J.
, and
Craggs
,
A.
,
1970
, “
A Simple Approach to Coupled Panel-Cavity Vibrations
,”
J. Sound Vib.
,
11
(
2
), pp.
207
215
.10.1016/S0022-460X(70)80064-5
6.
Guy
,
R. W.
, and
Bhattacharya
,
M. C.
,
1973
, “
The Transmission of Sound Through a Cavity-Backed Finite Plate
,”
J. Sound Vib.
,
27
(
2
), pp.
207
223
.10.1016/0022-460X(73)90062-X
7.
Dowell
,
E. H.
,
Gorman
,
G. F.
, and
Smith
,
D. A.
,
1977
, “
Acoustoelasticity: General Theory, Acoustic Natural Modes and Forced Response to Sinusoidal Excitation, Including Comparisons With Experiment
,”
J. Sound Vib.
,
52
(
4
), pp.
519
542
.10.1016/0022-460X(77)90368-6
8.
Guy
,
R. W.
,
1979
, “
The Response of a Cavity Backed Panel to External Airborne Excitation: A General Analysis
,”
J. Acoust. Soc. Am.
,
65
(
3
), pp.
719
731
.10.1121/1.382485
9.
Guy
,
R. W.
,
1980
, “
Pressure Developed Within a Cavity Backing a Finite Panel When Subjected to External Transient Excitation
,”
J. Acoust. Soc. Am.
,
68
(
6
), pp.
1736
1747
.10.1121/1.385208
10.
Qaisi
,
M. I.
,
1988
, “
Free Vibrations of a Rectangular Plate-Cavity System
,”
Appl. Acoust.
,
24
(
1
), pp.
49
61
.10.1016/0003-682X(88)90070-9
11.
Pan
,
J.
, and
Bies
,
D. A.
,
1990
, “
The Effect of Fluid–Structural Coupling on Sound Waves in an Enclosure—Theoretical Part
,”
J. Acoust. Soc. Am.
,
87
(
2
), pp.
691
707
.10.1121/1.398939
12.
Pan
,
J.
, and
Bies
,
D. A.
,
1990
, “
The Effect of Fluid–Structural Coupling on Sound Waves in an Enclosure—Experimental Part
,”
J. Acoust. Soc. Am.
,
87
(
2
), pp.
708
717
.10.1121/1.398940
13.
Peretti
,
L. F.
, and
Dowell
,
E. H.
,
1992
, “
Asymptotic Modal Analysis of a Rectangular Acoustic Cavity Excited by Wall Vibration
,”
AIAA J.
,
30
(
5
), pp.
1191
1198
.10.2514/3.11050
14.
Bokil
,
V. B.
, and
Shirahatti
,
U. S.
,
1994
, “
A Technique for the Modal Analysis of Sound-Structure Interaction Problems
,”
J. Sound Vib.
,
173
(
1
), pp.
23
41
.10.1006/jsvi.1994.1215
15.
Balachandran
,
B.
,
Sampath
,
A.
, and
Park
,
J.
,
1996
, “
Active Control of Interior Noise in a Three-Dimensional Enclosure
,”
Smart Mater. Struct.
,
5
(
1
), pp.
89
97
.10.1088/0964-1726/5/1/010
16.
Kim
,
S. M.
, and
Brennan
,
M. J.
,
1999
, “
A Compact Matrix Formulation Using the Impedance and Mobility Approach for the Analysis of Structural-Acoustic Systems
,”
J. Sound Vib.
,
223
(
1
), pp.
97
113
.10.1006/jsvi.1998.2096
17.
Sum
,
K. S.
, and
Pan
,
J.
,
2000
, “
On Acoustic and Structural Modal Cross-Couplings in Plate-Cavity Systems
,”
J. Acoust. Soc. Am.
,
107
(
4
), pp.
2021
2038
.10.1121/1.428486
18.
Luo
,
C.
,
Zhao
,
M.
, and
Rao
,
Z.
,
2005
, “
The Analysis of Structural-Acoustic Coupling of an Enclosure Using Green’s Function Method
,”
Int. J. Adv. Manuf. Technol.
,
27
(
3–4
), pp.
242
247
.10.1007/s00170-004-2178-4
19.
Li
,
Y. Y.
, and
Cheng
,
L.
,
2007
, “
Vibro-Acoustic Analysis of a Rectangular-Like Cavity With a Tilted Wall
,”
Appl. Acoust.
,
68
(
7
), pp.
739
751
.10.1016/j.apacoust.2006.04.005
20.
David
,
J. M.
, and
Menelle
,
M.
,
2007
, “
Validation of a Modal Method by Use of an Appropriate Static Potential for a Plate Coupled to a Water-Filled Cavity
,”
J. Sound Vib.
,
301
(
3–5
), pp.
739
759
.10.1016/j.jsv.2006.10.033
21.
Venkatesham
,
B.
,
Tiwari
,
M.
, and
Munjal
,
M. L.
,
2008
, “
Analytical Prediction of the Breakout Noise From a Rectangular Cavity With One Compliant Wall
,”
J. Acoust. Soc. Am.
,
124
(
5
), pp.
2952
2962
.10.1121/1.2977671
22.
Dhandole
,
S.
, and
Modak
,
S. V.
,
2010
, “
On Improving Weakly Coupled Cavity Models for Vibro-Acoustic Predictions and Design
,”
Appl. Acoust.
,
71
(
9
), pp.
876
884
.10.1016/j.apacoust.2010.05.001
23.
Kwon
,
Y. W.
, and
Owens
,
A. C.
,
2011
, “
Dynamic Responses of Composite Structures With Fluid–Structure Interaction
,”
Advances in. Composites Materials-Ecodesign and Analysis, IntechOpen Limited
,
London
, UK, pp.
337
358
.
24.
Kwon
,
Y. W.
,
Violette
,
M. A.
,
McCrillis
,
R. D.
, and
Didoszak
,
J. M.
,
2012
, “
Transient Dynamic Response and Failure of Sandwich Composite Structures Under Impact Loading With Fluid Structure Interaction
,”
Appl. Compos. Mater.
,
19
(
6
), pp.
921
940
.10.1007/s10443-012-9249-8
25.
Hasheminejad
,
S. M.
,
Shakeri
,
R.
, and
Rezaei
,
S.
,
2012
, “
Vibro-Acoustic Response of an Elliptical Plate-Cavity Coupled System to External Shock Loads
,”
Appl. Acoust.
,
73
(
8
), pp.
757
769
.10.1016/j.apacoust.2012.02.009
26.
Hosseini-Hashemi
,
S.
,
Karimi
,
M.
, and
Rokni
,
H.
,
2012
, “
Natural Frequencies of Rectangular Mindlin Plates Coupled With Stationary Fluid
,”
Appl. Math. Model.
,
36
(
2
), pp.
764
778
.10.1016/j.apm.2011.07.007
27.
Shahraeeni
,
M.
,
Shakeri
,
R.
, and
Hasheminejad
,
S. M.
,
2015
, “
An Analytical Solution for Free and Forced Vibration of a Piezoelectric Laminated Plate Coupled With an Acoustic Enclosure
,”
Comput. Math. Appl.
,
69
(
11
), pp.
1329
1341
.10.1016/j.camwa.2015.03.022
28.
Seung Cho
,
D.
,
Hee Kim
,
B.
,
Kim
,
J.-H.
,
Vladimir
,
N.
, and
Muk Choi
,
T.
,
2015
, “
Frequency Response of Rectangular Plate Structures in Contact With Fluid Subjected to Harmonic Point Excitation Force
,”
Thin-Walled Struct.
,
95
, pp.
276
286
.10.1016/j.tws.2015.07.013
29.
Liao
,
C. Y.
, and
Ma
,
C. C.
,
2016
, “
Vibration Characteristics of Rectangular Plate in Compressible Inviscid Fluid
,”
J. Sound Vib.
,
362
, pp.
228
251
.10.1016/j.jsv.2015.09.031
30.
Liao
,
C.-Y.
,
Wu
,
Y.-C.
,
Chang
,
C.-Y.
, and
Ma
,
C.-C.
,
2017
, “
Theoretical Analysis Based on Fundamental Functions of Thin Plate and Experimental Measurement for Vibration Characteristics of a Plate Coupled With Liquid
,”
J. Sound Vib.
,
394
, pp.
545
574
.10.1016/j.jsv.2017.01.023
31.
Gorman
,
D. J.
,
1999
,
Vibration Analysis of Plates by the Superposition Method
,
World Scientific
, Hackensack,
NJ
.
32.
Liao
,
C. Y.
,
2018
,
Theoretical Analysis, Numerical Calculation and Experimental Measurement on Vibration Characteristic and Transient Wave Propagation of Rectangular Plate Coupled With Fluid
,
Department of Mechanical Engineering, National Taiwan University
,
Taipei, Taiwan
.
33.
Davis
,
R. B.
,
2017
, “
A Simplified Approach for Predicting Interaction Between Flexible Structures and Acoustic Enclosures
,”
J. Fluid Struct.
,
70
, pp.
276
294
.10.1016/j.jfluidstructs.2017.02.003
34.
Khorshidi
,
K.
,
Akbari
,
F.
, and
Ghadirian
,
H.
,
2017
, “
Experimental and Analytical Modal Studies of Vibrating Rectangular Plates in Contact With a Bounded Fluid
,”
Ocean Eng.
,
140
, pp.
146
154
.10.1016/j.oceaneng.2017.05.017
35.
Zhang
,
H.
,
Shi
,
D.
,
Zha
,
S.
, and
Wang
,
Q.
,
2018
, “
Vibro-Acoustic Analysis of the Thin Laminated Rectangular Plate-Cavity Coupling System
,”
Compos. Struct.
,
189
, pp.
570
585
.10.1016/j.compstruct.2018.01.099
36.
Gunasekaran
,
V.
,
Pitchaimani
,
J.
, and
Chinnapandi
,
L. B. M.
,
2020
, “
Vibro-Acoustics Response of an Isotropic Plate Under Non-Uniform Edge Loading: An Analytical Investigation
,”
Aerosp. Sci. Technol.
,
105
, p.
106052
.10.1016/j.ast.2020.106052
37.
Trefethen
,
L. N.
,
2000
, “
Spectral Methods in MATLAB
,”
Society for Industrial and Applied Mathematics
, Philadelphia, PA.
38.
Kwak
,
M. K.
,
1997
, “
Hydroelastic Vibration of Circular Plates
,”
J. Sound Vib.
,
201
(
3
), pp.
293
303
.10.1006/jsvi.1996.0775
39.
Ergin
,
A.
, and
Temarel
,
P.
,
2002
, “
Free Vibration of a Partially Liquid-Filled and Submerged, Horizontal Cylindrical Shell
,”
J. Sound Vib.
,
254
(
5
), pp.
951
965
.10.1006/jsvi.2001.4139
40.
Ergin
,
A.
, and
Uğurlu
,
B.
,
2003
, “
Linear Vibration Analysis of Cantilever Plates Partially Submerged in Fluid
,”
J. Fluid Struct.
,
17
(
7
), pp.
927
939
.10.1016/S0889-9746(03)00050-1
41.
Kerboua
,
Y.
,
Lakis
,
A. A.
,
Thomas
,
M.
, and
Marcouiller
,
L.
,
2008
, “
Vibration Analysis of Rectangular Plates Coupled With Fluid
,”
Appl. Math. Model.
,
32
(
12
), pp.
2570
2586
.10.1016/j.apm.2007.09.004
42.
Sari
,
M. S.
, and
Butcher
,
E. A.
,
2012
, “
Free Vibration Analysis of Rectangular and Annular Mindlin Plates With Undamaged and Damaged Boundaries by the Spectral Collocation Method
,”
J. Vib. Control
,
18
(
11
), pp.
1722
1736
.10.1177/1077546311422242
You do not currently have access to this content.