Graphical Abstract Figure

Variation of the autocovariance of measured surface amplitude

Graphical Abstract Figure

Variation of the autocovariance of measured surface amplitude

Close modal

Abstract

In this work, a comprehensive experiment is conducted to investigate the spatio-temporal variability of young wind waves under steady wind forcing. The experimental setup included a wave tank equipped with a wind blower capable of generating a wide range of wind velocities. Wave elevation was measured at various airflow rates and fetches using a capacitance-type wave gauge. The spatial growth rates of young waves at different frequencies were assessed by analyzing wave gauge records taken at multiple fetches. In every case of wind blowing, the growing wave field exhibited strong nonhomogeneity, with an increase in wave energy along the wave channel accompanied by a decrease in frequency. Notably, the findings from the experiments reveal that young wind waves lose their temporal coherence within three local dominant wave periods, regardless of wind velocity and fetch. The limited temporal and spatial coherence of gravity-capillary and short wind waves has significant implications for radar remote sensing of the ocean surface.

References

1.
Tavakoli
,
S.
,
Khojasteh
,
D.
,
Haghani
,
M.
, and
Hirdaris
,
S.
,
2023
, “
A Review on the Progress and Research Directions of Ocean Engineering
,”
Ocean Eng.
,
272
, p.
113617
.
2.
Jeffreys
,
H.
,
1925
, “
On the Formation of Water Waves by Wind
,”
Proc. R. Soc. London, Ser., A
,
107
(
742
), pp.
189
206
.
3.
Phillips
,
O. M.
,
1957
, “
On the Generation of Waves by Turbulent Wind
,”
J. Fluid Mech.
,
2
(
5
), pp.
417
445
.
4.
Miles
,
J. W.
,
1957
, “
On the Generation of Surface Waves by Shear Flows
,”
J. Fluid Mech.
,
3
(
2
), pp.
185
204
.
5.
Banner
,
M. L.
, and
Melville
,
W. K.
,
1976
, “
On the Separation of Air Flow Over Water Waves
,”
J. Fluid Mech.
,
77
(
4
), pp.
825
842
.
6.
Snyder
,
R. L.
,
Dobson
,
F. W.
,
Elliott
,
J. A.
, and
Long
,
R. B.
,
1981
, “
Array Measurements of Atmospheric Pressure Fluctuations Above Surface Gravity Waves
,”
J. Fluid Mech.
,
102
, pp.
1
59
.
7.
Duncan
,
J. H.
,
2001
, “
Spilling Breakers
,”
Annu. Rev. Fluid Mech.
,
33
(
1
), pp.
519
547
.
8.
Romeiser
,
R.
,
Runge
,
H.
,
Suchandt
,
S.
,
Sprenger
,
J.
,
Weilbeer
,
H.
,
Sohrmann
,
A.
, and
Stammer
,
D.
,
2007
, “
Current Measurements in Rivers by Spaceborne Along-Track InSAR
,”
IEEE Trans. Geosci. Remote Sens.
,
45
(
12
), pp.
4019
4031
.
9.
Donelan
,
M. A.
,
Babanin
,
A. V.
,
Young
,
I. R.
,
Banner
,
M. L.
, and
McCormick
,
C.
,
2005
, “
Wave-Follower Field Measurements of the Wind-Input Spectral Function. Part I: Measurements and Calibrations
,”
J. Atmos. Oceanic Technol.
,
22
(
7
), pp.
799
813
.
10.
Gemmrich
,
J. R.
, and
Banner
,
M. L.
,
2011
, “
Modeling Wave-Induced Sea Spray and Its Impact on the Air-Sea Fluxes
,”
J. Phys. Oceanogr.
,
41
(
12
), pp.
2324
2339
.
11.
Yang
,
D.
, and
Shen
,
L.
,
2010
, “
Direct-Simulation-Based Study of Turbulent Flow Over Various Waving Boundaries
,”
J. Fluid Mech.
,
650
, pp.
131
180
.
12.
Li
,
T.
, and
Shen
,
L.
,
2022
, “
The Principal Stage in Wind-Wave Generation
,”
J. Fluid Mech.
,
934
, p.
A41
.
13.
Shemer
,
L.
,
Singh
,
S. K.
, and
Chernyshova
,
A.
,
2020
, “
Spatial Evolution of Young Wind Waves: Numerical Modelling Verified by Experiments
,”
J. Fluid Mech.
,
901
, p.
A22
.
14.
Mitsuyasu
,
H.
, and
Rikiishi
,
K.
,
1978
, “
The Growth of Duration-Limited Wind Waves
,”
J. Fluid Mech.
,
85
(
4
), pp.
705
730
.
15.
Zavadsky
,
A.
, and
Shemer
,
L.
,
2017
, “
Water Waves Excited by Near-Impulsive Wind Forcing
,”
J. Fluid Mech.
,
828
, pp.
459
495
.
16.
Geva
,
M.
, and
Shemer
,
L.
,
2022
, “
Wall Similarity in Turbulent Boundary Layers Over Wind Waves
,”
J. Fluid Mech.
,
935
, p.
A42
.
17.
Liberzon
,
D.
, and
Shemer
,
L.
,
2011
, “
Experimental Study of the Initial Stages of Wind Waves’ Spatial Evolution
,”
J. Fluid Mech.
,
681
, pp.
462
498
.
18.
Zavadsky
,
A.
, and
Shemer
,
L.
,
2012
, “
Characterization of Turbulent Airflow Over Evolving Water-Waves in a Wind-Wave Tank
,”
J. Geophys. Res. Oceans
,
117
(
C11
), pp.
1
21
.
19.
Zavadsky
,
A.
, and
Shemer
,
L.
,
2018
, “
Measurements of Waves in a Wind-Wave Tank Under Steady and Time-Varying Wind Forcing
,”
J. Vis. Exp.
,
132
, p.
e56480
.
20.
Kitaigorodskii
,
S.
,
1962
, “
Application of the Theory of Similarity to the Analysis of Wind-Generated Wave Motion as a Stochastic Process
,”
Izv. Geophys. Ser. Acad. Sci. USSR
,
1
, pp.
105
117
.
21.
Mitsuyasu
,
H.
,
1968
, “
On the Growth of the Spectrum of Wind-Generated Waves I
,”
Rep. Res. Inst. Appl. Mech., Kyushu Univ.
,
16
, p.
459
.
22.
Badulin
,
S. I.
,
Babanin
,
A. V.
,
Zakharov
,
V. E.
, and
Resio
,
D.
,
2007
, “
Weakly Turbulent Laws of Wind-Wave Growth
,”
J. Fluid Mech.
,
591
, pp.
339
378
.
23.
Babanin
,
A. V.
, and
Soloviev
,
Y. P.
,
1998
, “
Field Investigation of Transformation of the Wind Wave Frequency Spectrum With Fetch and the Stage of Development
,”
J. Phys. Oceanogr.
,
28
(
4
), pp.
563
576
.
24.
Zavadsky
,
A.
,
Liberzon
,
D.
, and
Shemer
,
L.
,
2013
, “
Statistical Analysis of the Spatial Evolution of the Stationary Wind Wave Field
,”
J. Phys. Oceanogr.
,
43
(
1
), pp.
65
79
.
25.
Fu
,
L. L.
, and
Glazman
,
R.
,
1991
, “
The Effect of the Degree of Wave Development on the Sea State Bias in Radar Altimetry Measurement
,”
J. Geophys. Res., Oceans
,
96
(
C1
), pp.
829
834
.
26.
Miles
,
J. W.
,
1960
, “
On the Generation of Surface Waves by Turbulent Shear Flows
,”
J. Fluid Mech.
,
7
(
3
), pp.
469
478
.
27.
Zhang
,
J.
,
Hector
,
A.
,
Rabaud
,
M.
, and
Moisy
,
F.
,
2023
, “
Wind-Wave Growth Over a Viscous Liquid
,”
Phys. Rev. Fluids
,
8
(
10
), p.
104801
.
28.
Plant
,
W. J.
,
1982
, “
A Relationship Between Wind Stress and Wave Slope
,”
J. Geophys. Res., Oceans
,
87
(
C3
), pp.
1961
1967
.
29.
Miles
,
J. W.
,
1959
, “
On the Generation of Surface Waves by Shear Flows. Part 2
,”
J. Fluid Mech.
,
6
(
4
), pp.
568
582
.
30.
Mitsuyasu
,
H.
, and
Honda
,
T.
,
1982
, “
Wind-Induced Growth of Water Waves
,”
J. Fluid Mech.
,
123
, pp.
425
442
.
31.
Branger
,
H.
,
Manna
,
M. A.
,
Luneau
,
C.
,
Abid
,
M.
, and
Kharif
,
C.
,
2022
, “
Growth of Surface Wind-Waves in Water of Finite Depth: A Laboratory Experiment
,”
Coast. Eng.
,
177
, p.
104174
.
32.
Shemer
,
L.
, and
Singh
,
S. K.
,
2021
, “
Spatially Evolving Regular Water Wave Under the Action of Steady Wind Forcing
,”
Phys. Rev. Fluids
,
6
(
3
), p.
034802
.
33.
Alpers
,
W.
, and
Brueckner
,
J. N.
,
1983
, “
Ocean Wave Spectra and Wave Direction Fields Derived From SAR Imagery of the Ocean
,”
IEEE Trans. Geosci. Remote Sens.
,
GE-21
(
4
), pp.
364
369
.
34.
Shemer
,
L.
, and
Marom
,
M.
,
1993
, “
Estimates of Ocean Coherence Time by an Interferometric SAR
,”
Int. J. Remote Sens.
,
14
(
16
), pp.
3021
3029
.
35.
Shemdin
,
O. H.
, and
Hsu
,
E. Y.
,
1967
, “
Direct Measurement of Aerodynamic Pressure Above a Simple Progressive Gravity Wave
,”
J. Fluid Mech.
,
30
(
2
), pp.
403
416
.
36.
Larson
,
T. R.
, and
Wright
,
J. W.
,
1975
, “
Wind-Generated Gravity-Capillary Waves: Laboratory Measurements of Temporal Growth Rates Using Microwave Backscatter
,”
J. Fluid Mech.
,
70
(
3
), pp.
417
436
.
37.
Wu
,
H. Y.
,
Hsu
,
E. Y.
, and
Street
,
R. L.
,
1979
, “
Experimental Study of Nonlinear Wave-Wave Interaction and White-Cap Dissipation of Wind-Generated Waves
,”
Dyn. Atmos. Oceans
,
3
(
1
), pp.
55
78
.
You do not currently have access to this content.