Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The scattering of incident waves by a surface-piercing inverted trapezoidal breakwater (SPTB) encircled by retrofit is numerically examined based on the assumptions of potential flow theory. The dual boundary element method is adopted to evaluate the hydrodynamic performance of the retrofitted SPTB breakwater. The scattering coefficients (i.e., wave transmission, wave reflection, energy loss), and force coefficients acting on the inner SPTB and outer retrofit are reported against relative water depth for various input values of breakwater and incident waves. The SPTB with 10% porosity, spacing S/h=0.25, width varied within 1.5B/W2, and depth d/h=0.2 is suggested against the incident waves to secure the coastal infrastructure.

References

1.
Liu
,
Y.
,
Li
,
Y. C.
, and
Teng
,
B.
,
2009
, “
Wave Motion Over Two Submerged Layers of Horizontal Thick Plates
,”
J. Hydrodyn.
,
21
(
4
), pp.
453
462
.
2.
Dhillon
,
H.
,
Banerjea
,
S.
, and
Mandal
,
B. N.
,
2016
, “
Water Wave Scattering by a Finite Dock Over a Step-Type Bottom Topography
,”
Ocean Eng.
,
113
, pp.
1
10
.
3.
Ning
,
D. Z.
,
Zhao
,
X. L.
,
Teng
,
B.
, and
Johanning
,
L.
,
2017
, “
Wave Diffraction From a Truncated Cylinder With an Upper Porous Sidewall and an Inner Column
,”
Ocean Eng.
,
130
, pp.
471
481
.
4.
Ding
,
W. W.
,
Zou
,
Z. J.
,
Wu
,
J. P.
, and
Huang
,
B. G.
,
2019
, “
Investigation of Surface-Piercing Fixed Structures With Different Shapes for Bragg Reflection of Water Waves
,”
Int. J. Nav. Archit. Ocean Eng.
,
11
(
2
), pp.
819
827
.
5.
Praveen
,
K. M.
,
Karmakar
,
D.
, and
Guedes Soares
,
C.
,
2020
, “
Wave Interaction With Floating Elastic Plate Based on the Timoshenko–Mindlin Plate Theory
,”
ASME J. Offshore Mech. Arct. Eng.
,
142
(
1
), p.
011601
.
6.
Mohapatra
,
A. K.
, and
Sahoo
,
T.
,
2024
, “
Bragg Scattering of Surface Gravity Waves by a Submerged Composite Wavy Porous Plate
,”
ASME J. Offshore Mech. Arct. Eng.
,
146
(
3
), p.
031201
.
7.
Vijay
,
K. G.
,
Venkateswarlu
,
V.
, and
Karmakar
,
D.
,
2020
, “
Scattering of Gravity Waves by Multiple Submerged Rubble-Mound Breakwaters
,”
Arab. J. Sci. Eng.
,
45
(
10
), pp.
8529
8550
.
8.
Mei
,
C. C.
, and
Black
,
J. L.
,
1969
, “
Scattering of Surface Waves by Rectangular Obstacles in Waters of Finite Depth
,”
J. Fluid Mech.
,
38
(
3
), pp.
499
511
.
9.
Williams
,
A. N.
, and
Li
,
W.
,
1998
, “
Wave Interaction With a Semi-Porous Cylindrical Breakwater Mounted on a Storage Tank
,”
Ocean Eng.
,
25
(
2–3
), pp.
195
219
.
10.
Neelamani
,
S.
,
Uday Bhaskar
,
N.
, and
Vijayalakshmi
,
K.
,
2002
, “
Wave Forces on a Seawater Intake Caisson
,”
Ocean Eng.
,
29
(
10
), pp.
1247
1263
.
11.
Chandrasekaran
,
S.
, and
Madhavi
,
N.
,
2015
, “
Retrofitting of Offshore Cylindrical Structures With Different Geometrical Configuration of Perforated Outer Cover
,”
Int. Shipbuild. Prog.
,
62
(
1–2
), pp.
43
56
.
12.
Sahoo
,
T.
,
Lee
,
M. M.
, and
Chwang
,
A. T.
,
2000
, “
Trapping and Generation of Waves by Vertical Porous Structures
,”
J. Eng. Mech.
,
126
(
10
), pp.
1074
1082
.
13.
Yip
,
T. L.
,
Sahoo
,
T.
, and
Chwang
,
A. T.
,
2002
, “
Trapping of Surface Waves by Porous and Flexible Structures
,”
Wave Motion
,
35
(
1
), pp.
41
54
.
14.
Barman
,
K. K.
, and
Bora
,
S. N.
,
2021
, “
Scattering and Trapping of Water Waves by a Composite Breakwater Placed on an Elevated Bottom in a Two-Layer Fluid Flowing Over a Porous Sea-Bed
,”
Appl. Ocean Res.
,
113
, p.
102544
.
15.
Venkateswarlu
,
V.
,
Vijay
,
K. G.
,
Nishad
,
C. S.
, and
Behera
,
H.
,
2024
, “
Oblique Wave Trapping by Sinusoidal Rippled Barrier of Finite Thickness Placed on Closely Spaced Semi-Circular Seabed
,”
Phys. Fluids
,
36
(
1
), pp.
1
21
.
16.
Yu
,
X.
,
1995
, “
Diffraction of Water Waves by Porous Breakwaters
,”
J. Waterw. Port Coast. Ocean Eng.
,
121
(
6
), pp.
275
282
.
17.
Kee
,
S. T.
, and
Kim
,
M. H.
,
1997
, “
Flexible Membrane Wave Barrier. II: Floating/Submerged Buoy-Membrane System
,”
J. Waterw. Port Coast. Ocean Eng.
,
123
(
2
), pp.
82
90
.
18.
Brebbia
,
C. A.
,
2017
, “
The Birth of the Boundary Element Method From Conception to Application
,”
Eng. Anal. Bound. Elem.
,
77
, pp.
iii
x
.
19.
Chen
,
J. T.
,
Hong
,
H. K.
, and
Chyuan
,
S. W.
,
1994
, “
Boundary Element Analysis and Design in Seepage Problems Using Dual Integral Formulation
,”
Finite Elem. Anal. Des.
,
17
(
1
), pp.
1
20
.
20.
Chen
,
J. T.
, and
Chen
,
K. H.
,
1998
, “
Dual Integral Formulation for Determining the Acoustic Modes of a Two-Dimensional Cavity With a Degenerate Boundary
,”
Eng. Anal. Bound. Elem.
,
21
(
2
), pp.
105
116
.
21.
Chen
,
K. H.
,
Chen
,
J. T.
,
Chou
,
C. R.
, and
Yueh
,
C. Y.
,
2002
, “
Dual Boundary Element Analysis of Oblique Incident Wave Passing a Thin Submerged Breakwater
,”
Eng. Anal. Bound. Elem.
,
26
(
10
), pp.
917
928
.
22.
Chen
,
K. H.
,
Chen
,
J. T.
,
Lin
,
S. Y.
, and
Lee
,
Y. T.
,
2004
, “
Dual Boundary Element Analysis of Normal Incident Wave Passing a Thin Submerged Breakwater With Rigid, Absorbing, and Permeable Boundaries
,”
J. Waterw. Port Coast. Ocean Eng.
,
130
(
4
), pp.
179
190
.
23.
Venkateswaralu
,
V.
,
Vijay
,
K. G.
,
Nishad
,
C. S.
, and
Sahoo
,
T.
,
2022
, “
Gravity Wave Scattering by Retrofitted Circular Breakwaters Using Dual Boundary Integral Formulation
,”
Ocean Eng.
,
265
, p.
112259
.
24.
Nishad
,
C. S.
,
Neelamani
,
S.
,
Vijay
,
K. G.
, and
Sahoo
,
T.
,
2022
, “
Bragg Scattering of Surface Gravity Waves by an Array of Surface-Piercing Variable Porosity Barriers
,”
J. Waterw. Port Coast. Ocean Eng.
,
148
(
6
), p.
04022021
.
25.
Bird
,
H. W. K.
, and
Shepherd
,
R.
,
1984
, “
On the Interactions of Surface Waves With Immersed Structures
,”
Int. J. Numer. Methods Fluids
,
4
(
8
), pp.
765
780
.
26.
Hutchison
,
B. L.
,
1984
, “
Impulse Response Techniques for Floating Bridges and Breakwaters Subject to Short-Crested Seas
,”
Mar. Technol.
,
21
(
3
), pp.
270
276
.
27.
Kumar
,
P. S.
,
Bhattacharjee
,
J.
, and
Sahoo
,
T.
,
2007
, “
Scattering of Surface and Internal Waves by Rectangular Dikes
,”
ASME J. Offshore Mech. Arct. Eng.
,
129
(
4
), pp.
306
317
.
28.
Qiu
,
L. C.
,
2009
, “
Modeling and Simulation of Transient Response of a Flexible Beam Floating in Finite Depth Water Under Moving Loads
,”
Appl. Math. Model.
,
33
(
3
), pp.
1620
1632
.
29.
Kumaran
,
V.
,
Neelamani
,
S.
,
Vijay
,
K. G.
,
Al-Anjari
,
N.
, and
Al-Ragum
,
A.
,
2022
, “
Wave Attenuation by Multiple Slotted Barriers With a Zig-Zag Arrangement-A Physical and Numerical Approach
,”
J. Hydro-environ. Res.
,
41
, pp.
25
37
.
30.
Panduranga
,
K.
, and
Koley
,
S.
,
2022
, “
Hydroelastic Analysis of Very Large Rectangular Plate Floating on Shallow Water
,”
Z. Angew. Math. Phys. (ZAMP)
,
73
, pp.
1
22
.
31.
Koley
,
S.
,
Behera
,
H.
, and
Sahoo
,
T.
,
2015
, “
Oblique Wave Trapping by Porous Structures Near a Wall
,”
J. Eng. Mech.
,
141
(
3
), p.
04014122
.
32.
Behera
,
H.
,
Gayathri
,
R.
, and
Selvan
,
S. A.
,
2020
, “
Wave Attenuation by Multiple Outer Porous Barriers in the Presence of an Inner Rigid Cylinder
,”
J. Waterw. Port Coast. Ocean Eng.
,
146
(
1
), p.
04019035
.
33.
Athul Krishna
,
K. R.
,
Abdulla
,
K.
, and
Karmakar
,
D.
,
2023
, “
Dissipation of Gravity Waves Due to Submerged Porous Plate Coupled With Porous Structures
,”
ASME J. Offshore Mech. Arct. Eng.
,
145
(
1
), p.
011201
.
34.
Sahoo
,
G.
,
Singla
,
S.
, and
Martha
,
S. C.
,
2023
, “
Mitigation of Wave Impact on Sea Wall by a Floating Elastic Plate and a Porous Structure
,”
ASME J. Offshore Mech. Arct. Eng.
,
145
(
5
), p.
051202
.
35.
Keerthi Raaj
,
S.
,
Vijay
,
K. G.
,
Neelamani
,
S.
,
Saha
,
N.
, and
Sundaravadivelu
,
R.
,
2024
, “
Gravity Wave Interaction With a Composite Pile–Rock Breakwater
,”
ASME J. Offshore Mech. Arct. Eng.
,
146
, p.
0319031
.
36.
Paul
,
D.
,
Hossain
,
M. M.
, and
Behera
,
H.
,
2024
, “
Hydrodynamic Stability Analysis of Shear-Layered Fluid Flow Over a Porous Bed in the Presence of a Floating Elastic Plate
,”
Int. J. Non-Lin. Mech.
,
159
, p.
104599
.
37.
Dhanunjaya
,
E.
,
Sanjeeva Rayudu
,
E.
, and
Venkateswarlu
,
V.
,
2024
, “
Hydrodynamic Performance of an Array of Stratified Pile Rock Breakwaters Placed on Elevated Seabed
,”
ASME J. Offshore Mech. Arct. Eng.
,
146
(
4
), pp.
1
12
.
38.
Vijay
,
K. G.
,
Venkateswarlu
,
V.
, and
Nishad
,
C. S.
,
2021
, “
Wave Scattering by Inverted Trapezoidal Porous Boxes Using Dual Boundary Element Method
,”
Ocean Eng.
,
219
, p.
108149
.
39.
Cho
,
I. H.
, and
Kim
,
M. H.
,
2013
, “
Transmission of Oblique Incident Waves by a Submerged Horizontal Porous Plate
,”
Ocean Eng.
,
61
, pp.
56
65
.
40.
Venkateswarlu
,
V.
,
Praveen
,
K. M.
,
Vijay
,
K. G.
,
Anil
,
K.
, and
Karmakar
,
D.
,
2022
, “
Oblique Wave Interaction With a T-Layer Pile-Rock Breakwater Placed on Elevated Bottom
,”
Ships Offshore Struct.
,
17
(
4
), pp.
852
865
.
41.
Praveen
,
K. M.
,
Venkateswarlu
,
V.
, and
Karmakar
,
D.
,
2022
, “
Hydroelastic Response of Floating Elastic Plate in the Presence of Vertical Porous Barriers
,”
Ships Offshore Struct.
,
17
(
2
), pp.
457
471
.
42.
Venkateswarlu
,
V.
,
Sanjeeva Rayudu
,
E.
,
Dhanunjaya
,
E.
, and
Vijay
,
K. G.
,
2023
, “
Wave Action Analysis of Multiple Bottom Fixed Semi-Circular Breakwaters in the Presence of a Floating Dock
,”
ASME J. Offshore Mech. Arct. Eng.
,
145
(
6
), p.
061201
.
43.
Lyu
,
Z.
,
Liu
,
Y.
,
Li
,
H.
, and
Mori
,
N.
,
2024
, “
Multipole Solution With Nonlinear Pressure Loss for Oblique Waves Action on a Submerged Partially Perforated Semi-Circular Breakwater
,”
Ocean Eng.
,
291
, p.
116487
.
44.
Molin
,
B.
, and
Remy
,
F.
,
2015
, “
Inertia Effects in TLD Sloshing With Perforated Screens
,”
J. Fluids Struct.
,
59
, pp.
165
177
.
45.
Liu
,
Y.
, and
Li
,
H. J.
,
2017
, “
Iterative Multi-domain BEM Solution for Water Wave Reflection by Perforated Caisson Breakwaters
,”
Eng. Anal. Bound. Elem.
,
77
, pp.
70
80
.
46.
Lyu
,
Z.
,
Liu
,
Y.
,
Li
,
H.
, and
Mori
,
N.
,
2020
, “
Iterative Multipole Solution for Wave Interaction With Submerged Partially Perforated Semi-Circular Breakwater
,”
Appl. Ocean Res.
,
97
, p.
102103
.
47.
Suh
,
K. D.
,
Ji
,
C. H.
, and
Kim
,
B. H.
,
2011
, “
Closed-Form Solutions for Wave Reflection and Transmission by Vertical Slotted Barrier
,”
Coast. Eng.
,
58
(
12
), pp.
1089
1096
.
48.
Huang
,
Z.
,
Li
,
Y.
, and
Liu
,
Y.
,
2011
, “
Hydraulic Performance and Wave Loadings of Perforated/Slotted Coastal Structures: A Review
,”
Ocean Eng.
,
38
(
10
), pp.
1031
1053
.
49.
Mackay
,
E.
, and
Johanning
,
L.
,
2020
, “
Comparison of Analytical and Numerical Solutions for Wave Interaction With a Vertical Porous Barrier
,”
Ocean Eng.
,
199
, p.
107032
.
50.
Yu
,
X.
, and
Chwang
,
A.
,
1994
, “
Water Waves Above Submerged Porous Plate
,”
J. Eng. Mech. ASCE
,
120
(
6
), pp.
1270
1282
.
51.
Hong
,
H. K.
, and
Chen
,
J. T.
,
1988
, “
Derivations of Integral Equations of Elasticity
,”
J. Eng. Mech.
,
114
(
6
), pp.
1028
1044
.
52.
Yueh
,
C. Y.
, and
Chuang
,
S. H.
,
2012
, “
A Boundary Element Model for a Partially Piston-Type Porous Wave Energy Converter in Gravity Waves
,”
Eng. Anal. Bound. Elem.
,
36
(
5
), pp.
658
664
.
53.
Chen
,
J. T.
,
Yueh
,
C. Y.
,
Chang
,
Y. L.
, and
Wen
,
C. C.
,
2017
, “
Why Dual Boundary Element Method Is Necessary?
,”
Eng. Anal. Bound. Elem.
,
76
, pp.
59
68
.
54.
Patil
,
S. B.
, and
Karmakar
,
D.
,
2023
, “
Hydrodynamic Performance of Wave Energy Converter Integrated With Pile Restrained Floating Structure Near a Partially Reflecting Seawall
,”
Ocean Eng.
,
285
, p.
115254
.
55.
Ouyang
,
H. T.
,
Chen
,
K. H.
, and
Tsai
,
C. M.
,
2015
, “
Investigation on Bragg Reflection of Surface Water Waves Induced by a Train of Fixed Floating Pontoon Breakwaters
,”
Int. J. Nav. Archit. Ocean Eng.
,
7
(
6
), pp.
951
963
.
56.
Zhao
,
Y.
,
Liu
,
Y.
,
Li
,
H. J.
, and
Chang
,
A. T.
,
2020
, “
Iterative Dual BEM Solution for Water Wave Scattering by Breakwaters Having Perforated Thin Plates
,”
Eng. Anal. Bound. Elem.
,
120
, pp.
95
106
.
You do not currently have access to this content.