Abstract

A comprehensive understanding of the marine environment in the offshore area requires phase-resolved wave information. For far-field wave propagation, computational efficiency is crucial, as large spatial and temporal scales are involved. For the near-field extreme wave events and wave impacts, high resolution is required to resolve the flow details and turbulence. The combined use of a computationally efficient large-scale model and a high-resolution local-scale solver provides a solution that combines accuracy and efficiency. This article introduces a coupling strategy between the efficient fully nonlinear potential flow (FNPF) solver REEF3D::FNPF and the high-fidelity computational fluid dynamics (CFD) model REEF3D::CFD within the open-source hydrodynamics framework REEF3D. REEF3D::FNPF solves the Laplace equation together with the boundary conditions on a sigma-coordinate. The free surface boundary conditions are discretized using high-order finite difference methods. The Laplace equation for the velocity potential is solved with a conjugated gradient solver preconditioned with a geometric multigrid provided by the open-source library Hypre. The model is fully parallelized following the domain decomposition strategy and the message passing interface protocol. The waves calculated with the FNPF solver are used as wave generation boundary conditions for the CFD-based numerical wave tank REEF3D::CFD. The CFD model employs an interface capturing two-phase flow approach that can resolve complex wave structure interaction, including breaking wave kinematics and turbulent effects. The presented hydrodynamic coupling strategy is tested for various wave conditions and the accuracy is fully assessed.

References

1.
Jacobsen
,
N. G.
,
Fuhrman
,
D. R.
, and
Fredsøe
,
J.
,
2012
, “
A Wave Generation Toolbox for the Open-Source CFD Library: OpenFOAM
,”
Int. J. Numer. Methods
,
70
(
9
), pp.
1073
1088
.
2.
Higuera
,
P.
,
Lara
,
L. J.
, and
Losada
,
I. J.
,
2013
, “
Realistic Wave Generation and Active Wave Absorption for Navier–Stokes Models Application to OpenFOAM
,”
Coastal Eng.
,
71
(
4
), pp.
102
118
.
3.
Westphalen
,
J.
,
Greaves
,
D. M.
,
Williams
,
C. J. K.
,
Hunt-Raby
,
A.
, and
Zang
,
J.
,
2012
, “
Focused Waves and Wave–Structure Interaction in a Numerical Wave Tank
,”
Ocean. Eng.
,
45
(
4
), pp.
9
21
.
4.
Pakozdi
,
C.
,
Kendon
,
T. E.
, and
Stansberg
,
C.-T.
,
2012
, “
A Numerical Study of a Focused Wave Packet Near the Surf Zone
,”
Volume 1: Offshore Technology of International Conference on Offshore Mechanics and Arctic Engineering
,
Rio de Janeiro, Brazil
,
July 1–6
, pp.
619
629
.
5.
Bihs
,
H.
,
Kamath
,
A.
,
Alagan Chella
,
M.
,
Aggarwal
,
A.
, and
Arntsen
,
Ø. A.
,
2016
, “
A New Level Set Numerical Wave Tank With Improved Density Interpolation for Complex Wave Hydrodynamics
,”
Comput. Fluids
,
140
(
2
), pp.
191
208
.
6.
Alagan Chella
,
M.
,
Bihs
,
H.
,
Myrhaug
,
D.
, and
Asgeir Arntsen
,
O.
,
2019
, “
Numerical Modeling of Breaking Wave Kinematics and Wave Impact Pressures on a Vertical Slender Cylinder
,”
J. Fluids Struct.
,
86
(
1
), pp.
94
123
.
7.
Aggarwal
,
A.
,
Bihs
,
H.
,
Shirinov
,
S.
, and
Myrhaug
,
D.
,
2019
, “
Estimation of Breaking Wave Properties and Their Interaction With a Jacket Structure
,”
J. Fluids Struct.
,
91
(
2
), p.
102722
.
8.
Kamath
,
A.
, and
Bihs
,
H.
,
2017
, “
Study of Water Impact and Entry of a Free Falling Wedge Using Computational Fluid Dynamics Simulations
,”
ASME J. Offshore Mech. Arct. Eng.
,
139
(
3
), p.
031802
.
9.
Engsig-Karup
,
A.
,
Bingham
,
H.
, and
Lindberg
,
O.
,
2009
, “
An Efficient Flexible-Order Model for 3D Nonlinear Water Waves
,”
J. Comput. Phys.
,
228
(
6
), pp.
2100
2118
.
10.
Engsig-Karup
,
A. P.
,
Madsen
,
M. G.
, and
Glimberg
,
S. L.
,
2012
, “
A Massively Parallel Gpu-accelerated Model for Analysis of Fully Nonlinear Free Surface Waves
,”
Int. J. Numer. Methods
,
70
(
1
), pp.
20
36
.
11.
Engsig-Karup
,
A. P.
,
Eskilsson
,
C.
, and
Bigoni
,
D.
,
2016
, “
A Stabilised Nodal Spectral Element Method for Fully Nonlinear Water Waves
,”
J. Comput. Phys.
,
318
, pp.
1
21
.
12.
Li
,
B.
, and
Fleming
,
C. A.
,
1997
, “
A Three Dimensional Multigrid Model for Fully Nonlinear Water Waves
,”
Coastal Eng.
,
30
(
3
), pp.
235
258
.
13.
Bihs
,
H.
,
Wang
,
W.
,
Pakozdi
,
C.
, and
Kamath
,
A.
,
2020
, “
REEF3D::FNPF—A Flexible Fully Nonlinear Potential Flow Solver
,”
ASME J. Offshore Mech. Arct. Eng.
,
142
(
4
), p.
041902
.
14.
Wang
,
W.
,
Kamath
,
A.
,
Pakozdi
,
C.
, and
Bihs
,
H.
,
2019
, “
Investigation of Focusing Wave Properties in a Numerical Wave Tank with a Fully Nonlinear Potential Flow Model
,”
J. Mar. Sci. Eng.
,
7
(
10
), p.
375
.
15.
Wang
,
W.
,
Pákozdi
,
C.
,
Kamath
,
A.
, and
Bihs
,
H.
,
2021
, “
A Fully Nonlinear Potential Flow Wave Modelling Procedure for Simulations of Offshore Sea States With Various Wave Breaking Scenarios
,”
Appl. Ocean. Res.
,
117
(
2
), p.
102898
.
16.
Paulsen
,
B. T.
,
Bredmose
,
H.
, and
Bingham
,
H. B.
,
2014
, “
An Efficient Domain Decomposition Strategy for Wave Loads on Surface Piercing Circular Cylinders
,”
Coastal Eng.
,
86
, pp.
57
76
.
17.
Baquet
,
A.
,
Kim
,
J.
, and
Huang
,
Z. J.
,
2017
, “
Numerical Modeling Using CFD and Potential Wave Theory for Three-Hour Nonlinear Irregular Wave Simulations
,”
Volume 1: Offshore Technology of International Conference on Offshore Mechanics and Arctic Engineering
,
Trondheim, Norway
,
June 25–30
, p. V001T01A002.
18.
Irschik
,
K.
,
Sparboom
,
U.
, and
Oumeraci
,
H.
,
2002
, “
Breaking Wave Characteristics for the Loading of a Slender Pile
,”
28th International Conference on Coastal Engineering
,
Cardiff, Wales
,
July 7–12
, pp.
1341
1352
.
19.
van der Vorst
,
H.
,
1992
, “
BiCGStab: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems
,”
SIAM J. Sci. Stat. Comput.
,
13
(
2
), pp.
631
644
.
20.
Ashby
,
S. F.
, and
Flagout
,
R. D.
,
1996
, “
A Parallel Mulitgrid Preconditioned Conjugate Gradient Algorithm for Groundwater Flow Simulations
,”
Nucl. Sci. Eng.
,
124
(
1
), pp.
145
159
.
21.
Mayer
,
S.
,
Garapon
,
A.
, and
Sørensen
,
L. S.
,
1998
, “
A Fractional Step Method for Unsteady Free Surface Flow With Applications to Non-Linear Wave Dynamics
,”
Int. J. Numer. Methods
,
28
(
2
), pp.
293
315
.
22.
Chen
,
Q.
,
Kelly
,
D. M.
, and
Zang
,
J.
,
2019
, “
On the Relaxation Approach for Wave Absorption in Numerical Wave Tanks
,”
Ocean Eng.
,
187
(
3
), p.
106210
.
23.
Schäffer
,
H. A.
, and
Klopman
,
G.
,
2000
, “
Review of Multidirectional Active Wave Absorption Methods
,”
J. Waterway Port Coastal Ocean Eng.
,
126
(
2
), pp.
88
97
.
24.
Jiang
,
G. S.
, and
Shu
,
C. W.
,
1996
, “
Efficient Implementation of Weighted ENO Schemes
,”
J. Comput. Phys.
,
126
(
1
), pp.
202
228
.
25.
Shu
,
C. W.
, and
Osher
,
S.
,
1988
, “
Efficient Implementation of Essentially Non-Oscillatory Shock Capturing Schemes
,”
J. Comput. Phys.
,
77
(
2
), pp.
439
471
.
26.
Smit
,
P.
,
Zijlema
,
M.
, and
Stelling
,
G.
,
2013
, “
Depth-Induced Wave Breaking in a Non-Hydrostatic, Near-Shore Wave Model
,”
Coastal Eng.
,
76
(
C2
), pp.
1
16
.
27.
Jensen
,
J. H.
,
Madsen
,
E. Ø.
, and
Fredsøe
,
J.
,
1999
, “
Oblique Flow Over Dredged Channels. Ii: Sediment Transport and Morphology
,”
J. Hydraul. Eng.
,
125
(
11
), pp.
1190
1198
.
28.
Wilcox
,
D. C.
,
1994
,
Turbulence Modeling for CFD
,
DCW Industries Inc.
,
La Canada, CA
.
29.
Naot
,
D.
, and
Rodi
,
W.
,
1982
, “
Calculation of Secondary Currents in Channel Flow
,”
J. Hydraul. Div. ASCE
,
108
(
8
), pp.
948
968
.
30.
Kamath
,
A.
,
Fleit
,
G.
, and
Bihs
,
H.
,
2019
, “
Investigation of Free Surface Turbulence Damping in RANS Simulations for Complex Free Surface Flows
,”
Water
,
11
(
456
), pp.
1
26
.
31.
Hossain
,
M. S.
, and
Rodi
,
W.
,
1980
, “
Mathematical Modeling of Vertical Mixing in Stratified Channel Flow
,”
2nd Symposium on Stratified Flows
,
Trondheim, Norway
,
June 24–27
.
32.
Chorin
,
A.
,
1968
, “
Numerical Solution of the Navier-Stokes Equations
,”
Math. Comput.
,
22
(
104
), pp.
745
762
.
33.
Berthelsen
,
P. A.
, and
Faltinsen
,
O. M.
,
2008
, “
A Local Directional Ghost Cell Approach for Incompressible Viscous Flow Problems With Irregular Boundaries
,”
J. Comput. Phys.
,
227
(
9
), pp.
4354
4397
.
34.
Osher
,
S.
, and
Sethian
,
J. A.
,
1988
, “
Fronts Propagating With Curvature-Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations
,”
J. Comput. Phys.
,
79
(
1
), pp.
12
49
.
35.
Jiang
,
G. S.
, and
Peng
,
D.
,
2000
, “
Weighted ENO Schemes for Hamilton-Jacobi Equations
,”
SIAM J. Sci. Comput.
,
21
(
6
), pp.
2126
2143
.
36.
Sussman
,
M.
,
Smereka
,
P.
, and
Osher
,
S.
,
1994
, “
A Level Set Approach for Computing Solutions to Incompressible Two-Phase Flow
,”
J. Comput. Phys.
,
114
(
1
), pp.
146
159
.
37.
Peng
,
D.
,
Merriman
,
B.
,
Osher
,
S.
,
Zhao
,
H.
, and
Kang
,
M.
,
1999
, “
A PDE-Based Fast Local Level Set Method
,”
J. Comput. Phys.
,
155
(
2
), pp.
410
438
.
38.
Mo
,
W.
,
Irschik
,
K.
,
Oumeraci
,
H.
, and
Liu
,
P.
,
2007
, “
A 3D Numerical Model for Computing Non-Breaking Wave Forces on Slender Piles
,”
J. Eng. Math.
,
58
, pp.
19
30
.
You do not currently have access to this content.