Abstract

In this article, the hydrodynamics of and nonlinear interaction between the large offshore fish farm “ShenLan 1” and regular waves are investigated using the open-source computational fluid dynamics (CFD) toolbox REEF3D. The framework consists of a rigid body dynamics solver for the frame structure coupled to a fluid solver including the shielding effects of the nets. The solver and grid independence are validated using a 2D numerical wave tank, a free decay test, and a study of the wave loads on a rigid net panel. Then, the effects of regular wave parameters, the thickness of the vertical outer columns of the structure, and the variations of the aspect ratios on the loads, responses, and maximum mooring tension forces are studied. It is concluded that the response motion is sensitive to the wave period rather than the wave height due to the longer duration of unidirectional wave loads acting on the frame. The frequent events of partial submersions and wave overtopping in rather steep waves are confirmed through the capturing of the free surface. The net system accounts for about 30% of the total drag but does not influence the structural response to a larger extend. The effect of the aspect ratio on the hydrodynamics is more distinct than that of the frame thickness. As a result of the study, the first step toward a systemic evaluation of the importance of different structural parts of an offshore fish cage for the expected responses is provided.

References

1.
Li
,
L.
,
Jiang
,
Z.
,
Høiland
,
A. V.
, and
Ong
,
M. C.
,
2018
, “
Numerical Analysis of a Vessel- Shaped Offshore Fish Farm
,”
ASME J. Offshore Mech. Arct. Eng.
,
140
(
4
), p.
041201
.
2.
Li
,
L.
,
Jiang
,
Z.
,
Ong
,
M. C.
, and
Hu
,
W.
,
2019
, “
Design Optimization of Mooring System: An Application to a Vessel-Shaped Offshore Fish Farm
,”
Eng. Struct.
,
197
, p.
109363
.
3.
Zhao
,
Y.
,
Guan
,
C.
,
Bi
,
C.
,
Liu
,
H.
, and
Cui
,
Y.
,
2019
, “
Experimental Investigations on Hydrodynamic Responses of a Semi-Submersible Offshore Fish Farm in Waves
,”
J. Mar. Sci. Eng.
,
7
(
238
), p.
7070238
.
4.
Liu
,
H.-F.
,
Bi
,
C.-W.
, and
Zhao
,
Y.-P.
,
2020
, “
Experimental and Numerical Study of the Hydrodynamic Characteristics of a Semisubmersible Aquaculture Facility in Waves
,”
Ocean Eng.
,
214
, p.
107714
.
5.
Huang
,
X.-H.
,
Liu
,
H.-Y.
,
Hu
,
Y.
,
Yuan
,
T.-P.
,
Tao
,
Q.-Y.
,
Wang
,
S.-M.
, and
Liu
,
Z.-X.
,
2020
, “
Hydrodynamic Performance of a Semi-Submersible Offshore Fish Farm With a Single Point Mooring System in Pure Waves and Current
,”
Aquac. Eng.
,
90
, p.
102075
.
6.
Martin
,
T.
,
Tsarau
,
A.
, and
Bihs
,
H.
,
2020
, “
A Numerical Framework for Modelling the Dynamics of Open Ocean Aquaculture Structures in Viscous Fluids
,”
Appl. Ocean Res.
,
106
, p.
102410
.
7.
Kristiansen
,
T.
, and
Faltinsen
,
O. M.
,
2012
, “
Modelling of Current Loads on Aquaculture Net Cages
,”
J. Fluids Struct.
,
34
, pp.
218
235
.
8.
Martin
,
T.
,
Kamath
,
A.
, and
Bihs
,
H.
,
2020
, “
A Lagrangian Approach for the Coupled Simulation of Fixed Net Structures in a Eulerian Fluid Model
,”
J. Fluids Struct.
,
94
, p.
102962
.
9.
Bihs
,
H.
,
Kamath
,
A.
,
Alagan Chella
,
M.
,
Aggarwal
,
A.
, and
Arntsen
,
Ø. A.
,
2016
, “
A New Level Set Numerical Wave Tank With Improved Density Interpolation for Complex Wave Hydrodynamics
,”
Comput. Fluids
,
140
, pp.
191
208
.
10.
Wilcox
,
D. C.
,
1998
,
Turbulence Modeling for CFD
, Vol.
2
.
DCW industries La Canada
,
CA
.
11.
Durbin
,
P. A.
,
2009
, “
Limiters and Wall Treatments in Applied Turbulence Modeling
,”
Fluid Dyn. Res.
,
41
(
1
), p.
12203
.
12.
Osher
,
S.
, and
Sethian
,
J. A.
,
1988
, “
Fronts Propagating With Curvature-Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations
,”
J. Comput. Phys.
,
79
(
1
), pp.
12
49
.
13.
Aggarwal
,
A.
,
Pákozdi
,
C.
,
Bihs
,
H.
,
Myrhaug
,
D.
, and
Alagan Chella
,
M.
,
2018
, “
Free Surface Reconstruction for Phase Accurate Irregular Wave Generation
,”
J. Mar. Sci. Eng.
,
6
(
3
), p.
105
.
14.
Jacobsen
,
N. G.
,
Fuhrman
,
D. R.
, and
Fredsøe
,
J.
,
2012
, “
A Wave Generation Toolbox for the Open-Source CFD Library: OpenFoam®
,”
Int. J. Numer. Methods Fluids
,
70
(
9
), pp.
1073
1088
.
15.
Jiang
,
G.-S.
, and
Shu
,
C.-W.
,
1996
, “
Efficient Implementation of Weighted ENO Schemes
,”
J. Comput. Phys.
,
126
(
1
), pp.
202
228
.
16.
Jiang
,
G.-S.
, and
Peng
,
D.
,
2000
, “
Weighted ENO Schemes for Hamilton–Jacobi Equations
,”
SIAM J. Sci. Comput.
,
21
(
6
), pp.
2126
2143
.
17.
Shu
,
C.-W.
, and
Osher
,
S.
,
1988
, “
Efficient Implementation of Essentially Non-Oscillatory Shock-Capturing Schemes
,”
J. Comput. Phys.
,
77
(
2
), pp.
439
471
.
18.
Zhao
,
Y.-P.
,
Liu
,
H.-F.
,
Bi
,
C.-W.
,
Cui
,
Y.
, and
Guan
,
C.-T.
,
2021
, “
Numerical Study on the Flow Field Inside and Around a Semi-Submersible Aquaculture Platform
,”
Appl. Ocean Res.
,
115
, p.
102824
.
19.
Martin
,
T.
, and
Bihs
,
H.
,
2021
, “
A Non-Linear Implicit Approach for Modelling the Dynamics of Porous Tensile Structures Interacting With Fluids
,”
J. Fluids Struct.
,
100
, p.
103168
.
20.
Chen
,
H.
, and
Christensen
,
E. D.
,
2018
, “
Simulating the Hydrodynamic Response of a Floater-Nnet System in Current and Waves
,”
J. Fluids Struct.
,
79
, pp.
50
75
.
21.
Gaeta
,
M. G.
,
Segurini
,
G.
,
Moreno
,
A. M.
, and
Archetti
,
R.
,
2020
, “
Implementation and Validation of a Potential Model for a Moored Floating Cylinder Under Waves
,”
J. Mar. Sci. Eng.
,
8
(
2
), p.
131
.
22.
Dong
,
S.
,
You
,
X.
, and
Hu
,
F.
,
2020
, “
Effects of Wave Forces on Knotless Polyethylene and Chain-Link Wire Netting Panels for Marine Aquaculture Cages
,”
Ocean Eng.
,
207
, p.
107368
.
23.
Fredriksson
,
D. W.
,
Swift
,
M.
,
Irish
,
J. D.
,
Tsukrov
,
I.
, and
Celikkol
,
B.
,
2003
, “
Fish Cage and Mooring System Dynamics Using Physical and Numerical Models with Field Measurements
,”
Aquac. Eng.
,
27
(
2
), pp.
117
146
.
24.
Huang
,
L.
,
2013
, “
Study on Hydrodynamic Characteristics of Circular HDPE Sea Cage System With Double Floating Tubes
,” Ph.D. thesis,
Ocean University of China
,
Qingdao, China
.
25.
Hashiura
,
M.
,
Hirabayashi
,
S.
, and
Suzuki
,
H.
,
2016
, “
Experimental Study of Shape Effect of Floating Body for Vortex-Induced Motion
,”
2016 Techno-Ocean (Techno-Ocean)
,
Kobe, Japan
,
Oct. 6–8
, pp.
74
79
.
26.
Dong
,
S.
,
Park
,
S.-g.
,
Zhou
,
J.
,
Li
,
Q.
,
Yoshida
,
T.
, and
Kitazawa
,
D.
,
2021
, “
Flow Field Inside and Around a Square Fish Cage Considering Fish School Swimming Pattern
,”
ASME 2020 40th International Conference on Ocean, Offshore & Arctic Engineering (OMAE 2021)
,
Virtual, online
,
Aug. 3–7
, pp.
1
9
.
You do not currently have access to this content.