Abstract

Propagation and impact of two- and three-dimensional bores generated by breaking of a water reservoir is studies by use of three theoretical models. These include the Reynolds-averaged Navier–Stokes (RANS) equations, the level I Green-Naghdi (GN) equations, and the Saint-Venant (SV) equations. Two types of bore generations are considered, namely, (i) bore generated by dam-break, where the reservoir water depth is substantially larger than the downstream water depth, and (ii) bore generated by an initial mound of water, where the reservoir water depth is larger but comparable to the downstream water depth. Each of these conditions corresponds to different natural phenomena. This study shows that the relative water depth plays a significant role on the bore shape, stability, and impact. Particular attention is given to the bore pressure on horizontal and vertical surfaces. The effect of fluid viscosity is studied by use of different turbulence closure models. Both two- and three-dimensional computations are performed to study their effect on bore dynamics. Results of the theoretical models are compared with each other and with available laboratory experiments. Information is provided on bore kinematics and dynamics predicted by each of these models. Discussion is given on the assumptions made by each model and differences in their results. In summary, SV equations have substantially simplified the physics of the problem, while results of the GN equations compare well with the RANS equations, with incomparable computational cost. RANS equations provide further details about the physics of the problem.

References

1.
Chanson
,
H.
,
2006
, “
Tsunami Surges on Dry Coastal Plains: Application of Dam Break Wave Equations
,”
Coastal Eng. J.
,
48
(
4
), pp.
355
370
. 10.1142/S0578563406001477
2.
Cross
,
R. H.
,
1967
, “
Tsunami Surge Forces
,”
J. Waterways Harbors Div.
,
93
(
4
), pp.
201
231
.
3.
Yeh
,
H.
,
2006
, “
Maximum Fluid Forces in the Tsunami Runup Zone
,”
J. Waterway, Port, Coastal, Ocean Eng.
,
132
(
6
), pp.
496
500
. 10.1061/(ASCE)0733-950X(2006)132:6(496)
4.
Kihara
,
N.
,
Niida
,
Y.
,
Takabatake
,
D.
,
Kaida
,
H.
,
Shibayama
,
A.
, and
Miyagawa
,
Y.
,
2015
, “
Large-scale Experiments on Tsunami-Induced Pressure on a Vertical Tide Wall
,”
Coastal Eng.
,
99
, pp.
46
63
. 10.1016/j.coastaleng.2015.02.009
5.
Linton
,
D.
,
Gupta
,
R.
,
Cox
,
D.
,
van de Lindt
,
J.
,
Oshnack
,
M. E.
, and
Clauson
,
M.
,
2012
, “
Evaluation of Tsunami Loads on Wood-Frame Walls At Full Scale
,”
J. Struct. Eng.
,
139
(
8
), pp.
1318
1325
. 10.1061/(ASCE)ST.1943-541X.0000644
6.
Mizutani
,
S.
, and
Imamura
,
F.
,
2001
, “
Dynamic Wave Force of Tsunamis Acting on a Structure
,”
Proceedings of the International Tsunami Symposium
,
Seattle, WA
,
Aug. 7–10
, pp.
7
28
.
7.
Robertson
,
I. N.
,
Paczkowski
,
K.
,
Riggs
,
H.
, and
Mohamed
,
A.
,
2011
, “
Tsunami Bore Forces on Walls
,”
ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering
,
Rotterdam, The Netherlands
,
June 9–14
,
American Society of Mechanical Engineers
, pp.
395
403
.
8.
Robertson
,
I. N.
,
Carden
,
L. P.
, and
Chock
,
G. Y.
,
2013
, “
Case Study of Tsunami Bore Impact on RC Wall
,”
ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering, American Society of Mechanical Engineers
,
Nantes, France
,
June 9–14
,
American Society of Mechanical Engineers
, pp.
V005T06A077
V005T06A085
.
9.
Santo
,
J.
, and
Robertson
,
I. N.
,
2010
, “
Lateral Loading on Vertical Structural Elements Due to a Tsunami Bore
,”
University of Hawaii
,
Honolulu
, Report No. UHM/CEE/10-02, pp.
107
137
.
10.
Rahman
,
S.
,
Akib
,
S.
,
Khan
,
M.
, and
Shirazi
,
S.
,
2014
, “
Experimental Study on Tsunami Risk Reduction on Coastal Building Fronted by Sea Wall
,”
Sci. World J.
,
2014
, pp.
94
101
. 10.1155/ 2014/729357
11.
Thusyanthan
,
N. I.
, and
Gopal Madabhushi
,
S. P.
,
2008
, “
Tsunami Wave Loading on Coastal Houses: A Model Approach
,”
P. I. Civil Eng-Civ. En.
,
161
(
2
), pp.
77
86
.
12.
Wijatmiko
,
I.
, and
Murakami
,
K.
,
2012
, “Hydrodynamics: Theory and Model,”
BoD–Books on Demand
,
J.
Zheng
, ed.,
Intech
,
Rijeka, Croatia
, pp.
59
78
.
13.
Asakura
,
R.
,
2000
, “
An Experimental Study on Wave Force Acting on On-Shore Structures Due to Overflowing Tsunamis
,”
Proceedings of Coastal Engineering, JSCE
,
47
, pp.
911
915
.
14.
Chinnarasri
,
C.
,
Thanasisathit
,
N.
,
Ruangrassamee
,
A.
,
Weesakul
,
S.
, and
Lukkunaprasit
,
P.
,
2013
, “
The Impact of Tsunami-Induced Bores on Buildings
,”
P. I. Civil Eng-Mar. En.
,
166
(
1
), pp.
14
24
.
15.
Fujima
,
K.
,
Achmad
,
F.
,
Shigihara
,
Y.
, and
Mizutani
,
N.
,
2009
, “
Estimation of Tsunami Force Acting on Rectangular Structures
,”
J. Disaster Res.
,
4
(
6
), pp.
404
409
. 10.20965/jdr.2009.p0404
16.
Nouri
,
Y.
,
Nistor
,
I.
,
Palermo
,
D.
, and
Cornett
,
A.
,
2010
, “
Experimental Investigation of Tsunami Impact on Free Standing Structures
,”
Coastal Eng. J.
,
52
(
01
), pp.
43
70
. 10.1142/S0578563410002117
17.
Palermo
,
D.
,
Nistor
,
I.
,
Al-Faesly
,
T.
, and
Cornett
,
A.
,
2012
, “
Impact of Tsunami Forces on Structures: The University of Ottawa Experience
,”
Proceedings of the Fifth International Tsunami Symposium
,
Ispra, Italy
,
Sept. 3–5
, pp.
43
70
.
18.
Palermo
,
D.
,
Nistor
,
I.
,
Nouri
,
Y.
, and
Cornett
,
A.
,
2009
, “
Tsunami Loading of Near-Shoreline Structures: A Primer
,”
Can. J. Civil Eng.
,
36
(
11
), pp.
1804
1815
. 10.1139/L09-104
19.
Robertson
,
I.
,
Riggs
,
H.
, and
Mohamed
,
A.
,
2008
, “
Experimental Results of Tsunami Bore Forces on Structures
,”
27th International Conference on Offshore Mechanics and Arctic Engineering.
Estoril, Portugal
,
June 15–20
, Vol.
135
, pp.
585
601
.
20.
Pilotti
,
M.
,
Maranzoni
,
A.
,
Tomirotti
,
M.
, and
Valerio
,
G.
,
2010
, “
1923 Gleno Dam Break: Case Study and Numerical Modeling
,”
J. Hydraulic Eng.
,
137
(
4
), pp.
480
492
. 10.1061/(ASCE)HY.1943-7900.0000327
21.
Seed
,
H. B.
, and
Duncan
,
J. M.
,
1981
, “
The Teton Dam Failure–A Retrospective Review
,”
Soil Mechanics and Foundation Engineering: Proceedings of the 10th International Conference on soil Mechanics and Foundation Engineering
,
Stockholm, Sweden
,
June 15–19
, pp.
219
238
.
22.
Jayasuriya
,
S. K.
, and
McCawley
,
P.
,
2011
,
The Asian Tsunami: Aid and Reconstruction After a Disaster
, vol.
1
,
Edward Elgar Publishing
, pp.
1
272
.
23.
West
,
M.
,
Sánchez
,
J. J.
, and
McNutt
,
S. R.
,
2005
, “
Periodically Triggered Seismicity At Mount Wrangell, Alaska, After the Sumatra Earthquake
,”
Science
,
308
(
5725
), pp.
1144
1146
. 10.1126/science.1112462
24.
Ritter
,
A.
,
1892
, “
Die Fortpflanzung Der Wasserwellen
,”
Zeitschrift des Vereines Deutscher Ingenieure
,
36
(
33
), pp.
947
954
.
25.
Hu
,
C.
, and
Kashiwagi
,
M.
,
2004
, “
A CIP-Based Method for Numerical Simulations of Violent Free-Surface Flows
,”
J. Mar. Sci. Technol.
,
9
(
4
), pp.
143
157
. 10.1007/s00773-004-0180-z
26.
Zhou
,
Z.
,
De Kat
,
J.
, and
Buchner
,
B.
,
1999
, “
A Nonlinear 3D Approach to Simulate Green Water Dynamics on Deck
,”
Proceedings of the Seventh International Conference on Numerical Ship Hydrodynamics
,
Nantes, France
,
July 1
, pp.
1
15
.
27.
Kleefsman
,
K.
,
Fekken
,
G.
,
Veldman
,
A.
,
Iwanowski
,
B.
, and
Buchner
,
B.
,
2005
, “
A Volume-of-Fluid Based Simulation Method for Wave Impact Problems
,”
J. Comput. Phys.
,
206
(
1
), pp.
363
393
. 10.1016/j.jcp.2004.12.007
28.
Wemmenhove
,
R.
,
Gladsø
,
R.
,
Iwanowski
,
B.
, and
Lefranc
,
M.
,
2010
, “
Comparison of CFD Calculations and Experiment for the Dambreak Experiment With One Flexible Wall
,”
The Twentieth International Offshore and Polar Engineering Conference
,
Beijing, China
,
June 20–25
,
International Society of Offshore and Polar Engineers
, pp.
200
205
.
29.
Lobovskỳ
,
L.
,
Botia-Vera
,
E.
,
Castellana
,
F.
,
Mas-Soler
,
J.
, and
Souto-Iglesias
,
A.
,
2014
, “
Experimental Investigation of Dynamic Pressure Loads During Dam Break
,”
J. Fluids Struct.
,
48
, pp.
407
434
. 10.1016/j.jfluidstructs.2014.03.009
30.
Ertekin
,
R. C.
,
Hayatdavoodi
,
M.
, and
Kim
,
J. W.
,
2014
, “
On Some Solitary and Cnoidal Wave Diffraction Solutions of the Green-Naghdi Equations
,”
Appl. Ocean Res.
,
47
, pp.
125
137
. 10.1016/j.apor.2014.04.005
31.
Robison
,
J.
, and
Scott Russell
,
J.
,
1837
, “
Report of the Committee on Waves
,”
7th Meeting of the British Association for the Advancement of Science
,
Liverpool, UK
,
May 4
, p.
226
.
32.
Lighthill
,
M. J.
, and
Lighthill
,
J.
,
1978
,
Waves in Fluids
,
Cambridge University Press
,
New York
.
33.
Stoker
,
J. J.
,
1957
,
Water Waves: The Nathematical Theory With Applications
, Vol.
36
,
John Wiley & Sons
,
New York
.
34.
Johnson
,
R. S.
,
1997
,
A Modern Introduction to the Mathematical Theory of Water Waves
, Vol.
19
,
Cambridge University Press
,
New York
.
35.
Craig
,
W.
,
2002
, “
Non-Eexistence of Solitary Water Waves in Three Dimensions
,”
Philos. Trans. R. Soc. London, Ser. A.
,
360
(
1799
), pp.
2127
2135
. 10.1098/rsta.2002.1065
36.
Evans
,
W.
, and
Ford
,
M.
,
1996
, “
An Exact Integral Equation for Solitary Waves (With New Numerical Results for Some ‘Internal’ Properties)
,”
Proc. R. Soc. London. Ser. A: Math., Phys. Eng. Sci.
,
452
(
1945
), pp.
373
390
. 10.1098/rspa.1996.0020
37.
Tsai
,
C.-H.
,
Huang
,
M.-C.
,
Young
,
F.-J.
,
Lin
,
Y.-C.
, and
Li
,
H.-W.
,
2005
, “
On the Recovery of Surface Wave by Pressure Transfer Function
,”
Ocean Eng.
,
32
(
10
), pp.
1247
1259
. 10.1016/j.oceaneng.2004.10.020
38.
Escher
,
J.
, and
Schlurmann
,
T.
,
2008
, “
On the Recovery of the Free Surface From the Pressure Within Periodic Traveling Water Waves
,”
J. Nonlinear Math. Phys.
,
15
(
suppl 2
), pp.
50
57
. 10.2991/jnmp.2008.15.s2.4
39.
Constantin
,
A.
,
Escher
,
J.
, and
Hsu
,
H.-C.
,
2011
, “
Pressure Beneath a Solitary Water Wave: Mathematical Theory and Experiments
,”
Arch. Rational Mech. Anal.
,
201
(
1
), pp.
251
269
. 10.1007/s00205-011-0396-0
40.
Ferziger
,
J. H.
, and
Peric
,
M.
,
2012
,
Computational Methods for Fluid Dynamics
, Vol.
3
,
Springer Science & Business Media
,
Berlin
.
41.
Menter
,
F. R.
,
1993
, “
Zonal Two Equation k − ε Turbulence Models for Aerodynamic Flows
,”
23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference
,
Orlando, FL
,
July 6–9
, pp.
1
21
.
42.
Menter
,
F. R.
,
Kuntz
,
M.
, and
Langtry
,
R.
,
2003
, “
Ten Years of Industrial Experience With the SST Turbulence Model
,”
Turbulence, Heat Mass Transfer
,
4
(
1
), pp.
625
632
.
43.
Wilcox
,
D. C.
,
1998
,
Turbulence modeling for CFD
, Vol.
2
,
DCW Industries
,
La Canada, CA
.
44.
Mokrani
,
C.
, and
Abadie
,
S.
,
2016
, “
Conditions for Peak Pressure Stability in VOF Simulations of Dam Break Flow Impact
,”
J. Fluids Struct.
,
62
, pp.
86
03
. 10.1016/j.jfluidstructs.2015.12.007
45.
Hirt
,
C. W.
, and
Nichols
,
B. D.
,
1981
, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
,
39
(
1
), pp.
201
225
. 10.1016/0021-9991(81)90145-5
46.
Greenshields
,
C. J.
,
2018
, “
OpenFOAM User Guide
,”
OpenFOAM Foundation Ltd
, version,
3
(
1
).
47.
Higuera
,
P.
,
Lara
,
J. L.
, and
Losada
,
I. J.
,
2013
, “
Realistic Wave Generation and Active Wave Absorption for Navier–Stokes Models: Application to OpenFOAM®
,”
Coastal Eng.
,
71
, pp.
102
118
. 10.1016/j.coastaleng.2012.07.002
48.
Green
,
A. E.
,
Laws
,
N.
, and
Naghdi
,
P. M.
,
1974
, “
On the Theory of Water Waves
,”
Proc. R. Soc. Lond. A
,
338
(
1612
), pp.
43
55
. 10.1098/rspa.1974.0072
49.
Green
,
A. E.
, and
Naghdi
,
P. M.
,
1976
, “
Directed Fluid Sheets
,”
Proc. R. Soc. London
,
347
(
1651
), pp.
447
473
. 10.1098/rspa.1976.0011
50.
Green
,
A. E.
, and
Naghdi
,
P. M.
,
1976
, “
A Derivation of Equations for Wave Propagation in Water of Variable Depth
,”
J. Fluid Mech.
,
78
(
2
), pp.
237
246
. 10.1017/S0022112076002425
51.
Ertekin
,
R. C.
,
1984
, “
Soliton Generation by Moving Disturbances in Shallow Water: Theory, Computation and Experiment
,” Ph.D. thesis,
University of California
at
Berkeley
.
52.
Hayatdavoodi
,
M.
, and
Ertekin
,
R. C.
,
2015
, “
Nonlinear Wave Loads on a Submerged Deck by the Green–Naghdi Equations
,”
ASME J. Offshore Mech. Arct. Eng.
,
137
(
1
), p.
011102
. 10.1115/1.4028997
53.
Hayatdavoodi
,
M.
, and
Ertekin
,
R. C.
,
2015
, “
Wave Forces on a Submerged Horizontal Plate. Part I: Theory and Modelling
,”
J. Fluids Struct.
,
54
(
April
), pp.
566
579
. 10.1016/j.jfluidstructs.2014.12.010
54.
Hayatdavoodi
,
M.
, and
Ertekin
,
R. C.
,
2015
, “
Wave Forces on a Submerged Horizontal Plate. Part II: Solitary and Cnoidal Waves
,”
J. Fluids Struct.
,
54
(
April
), pp.
580
596
. 10.1016/j.jfluidstructs.2014.12.009
55.
Hayatdavoodi
,
M.
,
Ertekin
,
R. C.
, and
Valentine
,
B. D.
,
2017
, “
Solitary and Cnoidal Wave Scattering by a Submerged Horizontal Plate in Shallow Water
,”
AIP Adv.
,
7
(
6
), p.
065212
. 10.1063/1.4987024
56.
Neill
,
D. R.
,
Hayatdavoodi
,
M.
, and
Ertekin
,
R. C.
,
2018
, “
On Solitary Wave Diffraction by Multiple, In-Line Vertical Cylinders
,”
Nonlinear Dyn.
,
91
(
2
), pp.
975
994
. 10.1007/s11071-017-3923-1
57.
Hayatdavoodi
,
M.
,
Neill
,
D. R.
, and
Ertekin
,
R. C.
,
2018
, “
Diffraction of Cnoidal Waves by Vertical Cylinders in Shallow Water
,”
Theor. Comput. Fluid Dyn.
,
32
(
5
), pp.
561
591
. 10.1007/s00162-018-0466-0
58.
Zhao
,
B. B.
,
Duan
,
W. Y.
, and
Ertekin
,
R. C.
,
2014
, “
Application of Higher-Level GN Theory to Some Wave Transformation Problems
,”
Coastal Eng.
,
83
(
1
), pp.
177
189
. 10.1016/j.coastaleng.2013.10.010
59.
Zhao
,
B. B.
,
Ertekin
,
R. C.
,
Duan
,
W. Y.
, and
Hayatdavoodi
,
M.
,
2014
, “
On the Steady Solitary-Wave Solution of the Green–Naghdi Equations of Different Levels
,”
Wave Motion
,
51
(
8
), pp.
1382
1395
. 10.1016/j.wavemoti.2014.08.009
60.
Zhao
,
B. B.
,
Duan
,
W. Y.
,
Ertekin
,
R. C.
, and
Hayatdavoodi
,
M.
,
2015
, “
High-Level Green–Naghdi Wave Models for Nonlinear Wave Transformation in Three Dimensions
,”
J. Ocean Eng. Mar. Energy
,
1
(
2
), pp.
121
132
. 10.1007/s40722–014–0009–8
61.
Saint-Venant
,
A. D.
,
1871
, “
Theorie Du Mouvement Non Permanent Des Eaux, Avec Application Aux Crues Des Rivieres Et a Líntroduction De Marees Dans Leurs Lits
,”
Comptes rendus des seances de l ′ Academie des Sciences
,
36
, pp.
147
237
. 10.3406/crai.1914.73407
62.
Mises
,
R. V.
,
1945
, “
On Saint Venant’s Principle
,”
Bull. Am. Math. Soc.
,
51
(
8
), pp.
555
562
. 10.1090/S0002-9904-1945-08394-3
63.
Manning
,
R.
,
1889
, “
On the Flow of Water in Open Channels and Pipes
,”
Inst. Civil Eng. Ireland
,
20
, pp.
161
207
.
64.
Kundu
,
P.
, and
Cohen
,
L.
,
1990
,
Fluid Mechanics
,
Academic Press
,
San Diego, CA
.
65.
Jameson
,
A.
,
Schmidt
,
W.
, and
Turkel
,
E.
,
1981
, “
Numerical Solution of the Euler Equations by Finite Volume Methods Using Runge Kutta Time Stepping Schemes
,”
14th Fluid and Plasma Dynamics Conference
,
Palo Alto, CA
,
June 23–25
, p.
1259
.
66.
Issa
,
R. I.
,
1986
, “
Solution of the Implicitly Discretised Fluid Flow Equations by Operator-splitting
,”
J. Comput. Phys.
,
62
(
1
), pp.
40
65
. 10.1016/0021-9991(86)90099-9
67.
Holzmann
,
T.
,
2016
,
Mathematics, Numerics, Derivations and Openfoam®
,
Loeben, Germany
,
Holzmann CFD
.
68.
Ertekin
,
R. C.
,
Webster
,
W. C.
, and
Wehausen
,
J. V.
,
1986
, “
Waves Caused by a Moving Disturbance in a Shallow Channel of Finite Width
,”
J. Fluid Mech.
,
169
, pp.
275
292
. 10.1017/S0022112086000630
69.
Morris
,
A. G.
,
2013
, “
Adapting Cartesian Cut Cell Methods for Flood Risk Evaluation
,” Ph.D. thesis,
Manchester Metropolitan University
.
70.
Hayatdavoodi
,
M.
,
Seiffert
,
B.
, and
Ertekin
,
R. C.
,
2015
, “
Experiments and Calculations of Cnoidal Wave Loads on a Flat Plate in Shallow-Water
,”
J. Ocean Eng. Mar. Energy
,
1
(
1
), pp.
77
99
. 10.1007/s40722–014–0007–x
71.
Hayatdavoodi
,
M.
,
Treichel
,
K.
, and
Ertekin
,
R. C.
,
2019
, “
Parametric Study of Nonlinear Wave Loads on Submerged Decks in Shallow Water
,”
J. Fluids Struct.
,
86
, pp.
266
289
. 10.1016/j.jfluidstructs.2019.02.016
You do not currently have access to this content.