Complex multidisciplinary physical fields formed by the dynamic interaction between fluid flows, structure motion, and seabed profile evolution are natural in a marine environment. Modeling and analysis of such fluid-structure-sediment interactions are essential for predicting and analyzing the nonlinear behavior of movable structures and their surrounding sediments under wave action. However, no analytical and numerical tools which consider the detailed physics of the entire coupled fluid-structure-sediment system are currently available. In this study, a three-dimensional coupled fluid-structure-sediment interaction model is developed to provide an overarching computational framework for simulating the dynamic behavior of multidisciplinary physical systems. The model consists of an extended Navier-Stokes solver that computes incompressible viscous multiphase flow, a volume-of-fluid module that tracks air-water interface motion, an immersed boundary module that tracks structure motion, and a sediment transport module that tracks suspended sediment motion and seabed profile evolution. For validation, the model is applied to hydraulic experiments on local scouring around a movable short cylinder supported at the base. It is found that the model predicts scour patterns around the cylinder reasonably well, consistent with experimental results measured in the hydraulic experiments. In addition, the computational applicability of the model is demonstrated to predict and analyze a general complex fluid-structure-sediment interaction phenomenon in the marine environment.

References

1.
Lee
,
K.-H.
, and
Mizutani
,
N.
,
2009
, “
A Numerical Wave Tank Using Direct-Forcing Immersed Boundary Method and Its Application to Wave Force on a Horizontal Cylinder
,”
Coastal Eng. J.
,
51
(
1
), pp.
27
48
.10.1142/S0578563409001928
2.
Liu
,
X.
, and
García
,
M. H.
,
2008
, “
Three-Dimensional Numerical Model With Free Water Surface and Mesh Deformation for Local Sediment Scour
,”
J. Waterway, Port, Coastal, Ocean Eng.
,
134
(
4
), pp.
203
217
.10.1061/(ASCE)0733-950X(2008)134:4(203)
3.
Nakamura
,
T.
, and
Yim
,
S. C.
,
2011
, “
A Nonlinear Three-Dimensional Coupled Fluid-Sediment Interaction Model for Large Seabed Deformation
,”
ASME J. Offshore Mech. Arctic Eng.
,
133
(
3
),
p
. 031103. 10.1115/1.4002733
4.
Voropayev
,
S. I.
,
Testik
,
F. Y.
,
Fernando
,
H. J. S.
, and
Boyer
,
D. L.
,
2003
, “
Burial and Scour Around Short Cylinder Under Progressive Shoaling Waves
,”
Ocean Eng.
,
30
, pp.
1647
1667
.10.1016/S0029-8018(02)00146-4
5.
Catano-Lopera
,
Y. A.
,
Demir
,
S. T.
, and
Garcia
,
M. H.
,
2007
, “
Self-Burial of Short Cylinders Under Oscillatory Flows and Combined Waves Plus Currents
,”
IEEE J. Ocean. Eng.
,
32
(
1
), pp.
191
203
.10.1109/JOE.2007.890968
6.
Gilbert
,
R. W.
,
Zedler
,
E. A.
,
Grilli
,
S. T.
, and
Street
,
R. L.
,
2007
, “
Progress on Nonlinear-Wave-Forced Sediment Transport Simulation
,”
IEEE J. Ocean, Eng.
,
32
(
1
), pp.
236
248
.10.1109/JOE.2007.890979
7.
Hatton
,
K. A.
,
Foster
,
D. L.
,
Traykovski
,
P.
, and
Smith
,
H. D.
,
2007
, “
Numerical Simulations of the Flow and Sediment Transport Regimes Surrounding a Short Cylinder
,”
IEEE J. Ocean. Eng.
,
32
(
1
), pp.
249
259
.10.1109/JOE.2007.890986
8.
Kunugi
,
T.
,
2000
, “
MARS for Multiphase Calculation
,”
Comp. Fluid Dyn. J.
,
9
(
1
),
p
.
IX
563
.
9.
Kajishima
,
T.
,
Takiguchi
,
S.
,
Hamasaki
,
H.
, and
Miyake
,
Y.
,
2001
, “
Turbulence Structure of Particle-Laden Flow in a Vertical Plane Channel Due to Vortex Shedding
,”
JSME Int. J. Ser. B
,
44
(
4
), pp.
526
535
.10.1299/jsmeb.44.526
10.
Roulund
,
A.
,
Sumer
,
B. M.
,
Fredsøe
,
J.
, and
Michelsen
,
J.
,
2005
, “
Numerical and Experimental Investigation of Flow and Scour Around a Circular Pile
,”
J. Fluid Mech.
,
534
, pp.
351
401
.10.1017/S0022112005004507
11.
Nakamura
,
T.
,
Mizutani
,
N.
, and
Fujima
,
K.
,
2010
, “
Three-Dimensional Numerical Analysis on Deformation of Run-Up Tsunami and Tsunami Force Acting on Square Structures
,”
Proc. 32nd Int. Conf. on Coastal Eng
.,
ASCE
, Vol.
32
, currents,
14
,
10
p.
12.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
,
1992
, “
A Continuum Method for Modeling Surface Tension
,”
J. Comp. Phys.
,
100
, pp.
335
354
.10.1016/0021-9991(92)90240-Y
13.
Mizutani
,
N.
,
McDougal
,
W. G.
, and
Mostafa
,
A. M.
,
1996
, “
BEM-FEM Combined Analysis of Nonlinear Interaction Between Wave and Submerged Breakwater
,”
Proc. 25th Int. Conf. on Coastal Eng
.,
ASCE
, pp.
2377
2390
.
14.
Salvetti
,
M. V.
, and
Banerjee
,
S.
,
1995
, “
A Priori Tests of a New Dynamic Subgrid-Scale Model for Finite Difference Large-Eddy Simulations
,”
Phys. Fluids
,
7
(
11
), pp.
2831
2847
.10.1063/1.868779
15.
Coastal Development Institute of Technology (CDIT)
,
2001
, “
Research and Development of Numerical Wave Flume (Super Roller Flume for Computer Aided Design of Maritime Structure)
,”
296
p. (in Japanese).
16.
Hinatsu
,
M.
,
1992
, “
Numerical Simulation of Unsteady Viscous Nonlinear Waves Using Moving Grid System Fitted on a Free Surface
,”
J. Kansai Soc. Naval Arch.
,
217
, pp.
1
11
. Available at http://ci.nii.ac.jp/naid/110003871898/en/
17.
Cruz
,
E.
,
Yokoki
,
H.
,
Isobe
,
M.
, and
Watanabe
,
A.
,
1993
, “
Nonreflecting Boundary Condition for Nonlinear Wave Equation
,”
Proc. Coastal Eng.
,
40
, pp.
46
50
(in Japanese).10.2208/proce1989.40.46
18.
Germano
,
M.
,
Piomelli
,
U.
,
Moin
,
P.
, and
Cabot
,
W. H.
,
1991
, “
A Dynamic Subgrid-Scale Eddy Viscosity Model
,”
Phys. Fluids A
,
3
(
7
), pp.
1760
1765
.10.1063/1.857955
19.
Engelund
,
F.
, and
Fredsøe
,
J.
,
1976
, “
A Sediment Transport Model for Straight Alluvial Channels
,”
Nordic Hydrol.
,
7
, pp.
293
306
.
20.
Brooks
,
H. N.
,
1963
, “
Discussion on “Boundary Shear Stresses in Curved Trapezoidal Channels
,”
by A. T. Ippen and P. A. Drinker,” J. Hydraulic Div.
,
89
(
3
), pp.
327
333
. Available at http://cedb.asce.org/cgi/WWWdisplay.cgi?258785
21.
Nielsen
,
P.
,
Svendsen
,
I. A.
, and
Staub
,
C.
,
1978
, “
Onshore-Offshore Sediment Movement on a Beach
,”
Proc. 16th Int. Conf. Coastal Eng
.,
ASCE
, pp.
1475
1492
.
22.
Nielsen
,
P.
,
1992
, “
Coastal Bottom Boundary Layers and Sediment Transport
,”
Advanced Series on Ocean Engineering
,
World Scientific
,
Singapore
, Vol.
5
,
340
pp.
23.
Testik
,
F. Y.
,
Voropayev
,
S. I.
, and
Fernando
,
H. J. S.
,
2005
, “
Flow Around a Short Horizontal Bottom Cylinder Under Steady and Oscillatory Flows
,”
Phys. Fluids
,
17
,
11
p.
031103
.
24.
Jeong
,
J.
, and
Hussain
,
F.
,
1995
, “
On the Identification of a Vortex
,”
J. Fluid Mech.
,
285
, pp.
69
94
.10.1017/S0022112095000462
25.
Miura
,
H.
, and
Kida
,
S.
,
1998
, “
Identification and Visualization of Low-Pressure Vortices In Turbulence
,” Nagare Multimedia, JSFM, http://www2.nagare.or.jp/mm/98/miura/index.htm (in Japanese).
You do not currently have access to this content.