This paper analyzes temperature measurements acquired in the offshore operation of a wave energy converter array. The three directly driven wave energy converters have linear generators and are connected to a marine substation placed on the seabed. The highly irregular individual linear generator voltages are rectified and added on a common dc-link and inverted to 50 Hz to facilitate future grid-connection. The electrical power is transmitted to shore and converted to heat in a measuring station. The first results of temperature measurements on substation components and on the stator of one of the linear generators are presented based on operation in linear and in nonlinear damping. The results indicate that there might be some convective heat transfer in the substation vessel. If high power levels are extracted from the waves, this has to be considered when placing components in the substation vessel in order to avoid heating from neighboring components. The results also indicate that the temperature increase in the linear generator stator is very small. Failure due to excessive heating of the stator winding polyvinyl chloride cable insulation is unlikely to occur even in very energetic sea states. Should this conclusion be incorrect, the thermal conductivity between the stator and the hull of the wave energy converter could be enhanced. Another suggested alteration is to lower the resistive losses by reducing the linear generator current density.

References

1.
Falcao
,
A. F. de O.
, “
Wave Energy Utilization: A Review of the Technologies
,”
Renewable Sustainable Energy Rev.
,
14
(
3
), pp.
899
918
.
2.
Wave Energy Centre
, 2011, “
Welcomes
,” http://www.wavec.orghttp://www.wavec.org
3.
Falnes
,
J.
, and
Lovseth
,
J.
, 1991, “
Ocean Wave Energy
,”
Energy Policy
,
19
, pp.
768
775
.
4.
Clemént
,
A.
,
McCullen
,
P.
,
Falcão
,
A.
,
Fiorentino
,
A.
,
Gardner
,
F.
,
Hammarlund
,
K.
,
Lemonis
,
G.
,
Lewis
,
T.
,
Nielsen
,
K.
,
Petroncini
,
S.
,
Pontes
,
M.T.
,
Schild
,
P.
,
Sjöström
,
B.O.
,
Sorensen
,
H.C.
, and
Thorpe
,
T.
, 2002, “
Wave Energy in Europe: Current Status and Perspectives
,”
Renewable Sustainable Energy Rev.
,
6
, pp.
405
431
.
5.
Callaway
,
E.
, 2007, “
To Catch a Wave
,”
Nature
,
450
, pp.
156
159
.
6.
Mueller
,
M. A.
, and
Baker
,
N. J.
, 2002, “
A Low Speed Reciprocating Permanent Magnet Generator for Direct Drive Wave Energy Converters
,”
International Conference on Power Electronics, Machines and Drives
, pp.
468
473
.
7.
Elwood
,
D.
,
Solomon
,
C. Y.
,
Prudell
,
J.
,
Stillinger
,
C.
,
von Jouanne
,
A.
,
Brekken
,
T.
,
Brown
,
A.
, and
Paasch
,
R.
, 2010, “
Design, Construction, and Ocean Testing of a Taut-Moored Dual-Body Wave Energy Converter With a Linear Generator Power Take-off
,”
Renewable Energy
,
35
, pp.
348
354
.
8.
Brooking
,
P. R. M.
, and
Mueller
,
M. A.
, 2005, “
Power Conditioning of the Output From a Linear Vernier Hybrid Permanent Magnet Generator for Use in Direct Drive Wave Energy Converters
,”
IEE Proc.: Gener. Transm. Distrib.
,
152
(
5
), pp.
673
681
.
9.
Thorburn
,
K.
,
Bernhoff
,
H.
, and
Leijon
,
M.
, 2004, “
Wave Energy Transmission Concepts for Linear Generator Arrays
,”
Ocean Eng.
,
31
(
11–12
), pp.
1339
1349
.
10.
Molinas
,
M.
,
Skjervheim
,
O.
,
Andreasen
,
P
,
Undeland
,
T.
,
Hals
,
J.
,
Moan
,
T.
, and
Sorby
,
B.
, 2007, “
Power Electronics as Grid Interface for Actively Controlled Wave Energy Converters
,”
International Conference on Clean Electric Power (ICCEP2007)
, pp.
188
195
.
11.
Leijon
,
M.
,
Boström
,
C.
,
Danielsson
,
O.
,
Gustefsson
,
S.
,
Haikonen
,
K.
,
Langhamer
,
O.
,
Strömstedt
,
E.
,
Stålberg
,
M.
,
Sundberg
,
J.
,
Svensson
,
O.
,
Tyrberg
,
S.
, and
Waters
,
R.
, 2008, “
Wave Energy from the North Sea: Experiences From the Lysekil Research Site
,”
Surv. Geophys.
,
29
, pp.
221
240
.
12.
Boström
,
C.
, and
Leijon
,
M.
, 2011, “
Operation Analysis of a Wave Energy Converter Under Different Load Conditions
,”
IET Power Generation
,
58
(
3
), pp.
245
250
.
13.
Rahm
,
M.
,
Boström
,
C.
,
Svensson
,
O.
,
Grabbe
,
M.
,
Bulow
,
F.
, and
Leijon
,
M.
, 2009, “
Laboratory Experimental Verification of a Marine Substation
,”
Proceedings of the 8th European Wave and Tidal Energy Conference, EWTEC09
, Uppsala, Sweden, pp.
51
58
.
14.
Svensson
,
O.
,
Boström
,
C.
,
Rahm
,
M.
, and
Leijon
,
M.
, 2009, “
Description of the Control and Measurement System Used in the Low Voltage Marine Substation at the Lysekil Research Site
,”
Proceedings of the 8th European Wave and Tidal Energy Conference, EWTEC09
, Uppsala, Sweden, pp.
44
50
.
15.
Boström
,
C.
,
Svensson
,
O.
,
Rahm
,
M.
,
Lejerskog
,
E.
,
Savin
,
A.
,
Strömstedt
,
E.
,
Engström
,
J.
,
Gravråkmo
,
H.
,
Haikonen
,
K.
,
Waters
,
R.
,
Björklöf
,
D.
,
Johansson
,
T.
,
Sundberg
,
J.
, and
Leijon
,
M.
, 2009, “
Design Proposal of Electrical System for Linear Generator Wave Power Plants
,”
Proceedings of IECON 2009, the 35th Annual Conference of the IEEE Industrial Electronics and Society
,
Porto
,
Portugal
, Nov. 3–5, No. PD-027448, pp.
4429
4434
.
16.
Draka
, 2011, “
Starsida
,” http://www.draka.sehttp://www.draka.se
17.
Waters
,
R.
,
Stålberg
,
M.
,
Danielsson
,
O.
,
Svensson
,
O.
,
Gustafsson
,
S.
,
Stråmstedt
,
E.
,
Eriksson
,
M.
,
Sundberg
,
J.
, and
Leijon
,
M.
, 2007, “
Experimental Results From Sea Trials of an Offshore Wave Energy System
,”
Appl. Phys. Lett.
,
90
, p.
034105
.
18.
Stålberg
,
M.
,
Waters
,
R.
,
Danielsson
,
O.
, and
Leijon
,
M.
, 2008, “
Influence of Generator Damping on Peak Power and Variance of Power for a Direct Drive Wave Energy Converter
,”
J. Ocean Mech. Arctic Eng.
,
130
(
3
), p.
031003
.
19.
Boström
,
C.
,
Waters
,
R.
,
Lejerskog
,
E.
,
Svensson
,
O.
,
Stålberg
,
M.
,
Strömstedt
,
E.
, and
Leijon
,
M.
, 2009, “
Study of a Wave Energy Converter Connected to a Nonlinear Load
,”
IEEE J. Ocean. Eng.
,
34
(
2
), pp.
123
127
.
20.
National Semiconductor Corporation
, 2000, “
LM35: Precision Centigrade Temperature Sensors
,” http://www.national.com/ds/LM/LM35.pdfhttp://www.national.com/ds/LM/LM35.pdf.
You do not currently have access to this content.