Abstract

Magnetic resonance imaging (MRI) guided laser interstitial thermal therapy (LITT) is a procedure used for treating glioblastomas and epilepsy lesions in the brain. Current methods for placing LITT ablation probes use straight trajectories. This limits the treatment area, necessitating multiple passes of straight trajectories or risking untreated tumor margins. This work presents a port delivery cannula system (PDCS) to be integrated within existing surgical workflows of LITT, providing off-axis navigation to areas otherwise deemed inaccessible. The design of the PDCS is centered around a two-tube, Nitinol active cannula system, which delivers, places, and retracts a flexible, thermoplastic port along curved trajectories. We present the design of the PDCS system and validate it in free-space, phantom models, and ovine brain trials, with a specific focus on evaluating key parameters of port material characteristics. Eight commercial, biocompatible ports and five custom ports created using additive manufacturing were investigated. Results illustrate that ideal port characteristics include durometers between 85A–95A, a low coefficient of friction, and a wall thickness of approximately 20% of the overall port diameter. Our results also demonstrate that the PDCS system can achieve accuracies under 1 mm in phantom models and 2 mm in ovine tissue.

References

1.
Ostrom
,
Q. T.
,
Cioffi
,
G.
,
Gittleman
,
H.
,
Patil
,
N.
,
Waite
,
K.
,
Kruchko
,
C.
, and
Barnholtz-Sloan
,
J. S.
,
2019
, “
CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2012–2016
,”
Neuro-Oncology
,
21
(
Suppl_5
), pp.
v1
v100
.10.1093/neuonc/noz150
2.
Lee
,
E. J.
,
Kalia
,
S. K.
, and
Hong
,
S. H.
,
2019
, “
A Primer on Magnetic Resonance-Guided Laser Interstitial Thermal Therapy for Medically Refractory Epilepsy
,”
J. Korean Neurosurg. Soc.
,
62
(
3
), pp.
353
360
.10.3340/jkns.2019.0105
3.
Wicks
,
R. T.
,
Jermakowicz
,
W. J.
,
Jagid
,
J. R.
,
Couture
,
D. E.
,
Willie
,
J. T.
,
Laxton
,
A. W.
, and
Gross
,
R. E.
,
2016
, “
Laser Interstitial Thermal Therapy for Mesial Temporal Lobe Epilepsy
,”
Neurosurgery
,
79
(
Suppl. 1
), pp.
S83
S91
.10.1227/NEU.0000000000001439
4.
Missios
,
S.
,
Bekelis
,
K.
, and
Barnett
,
G. H.
,
2015
, “
Renaissance of Laser Interstitial Thermal Ablation
,”
Neurosurg. Focus
,
38
(
3
), p.
E13
.10.3171/2014.12.FOCUS14762
5.
Jethwa
,
P. R.
,
Barrese
,
J. C.
,
Gowda
,
A.
,
Shetty
,
A.
, and
Danish
,
S. F.
,
2012
, “
Magnetic Resonance Thermometry-Guided Laser-Induced Thermal Therapy for Intracranial Neoplasms: Initial Experience
,”
Neurosurgery
,
71
(
Suppl. 1
), pp.
ons133
ons145
.10.1227/NEU.0b013e31826101d4
6.
Pruitt
,
R.
,
Gamble
,
A.
,
Black
,
K.
,
Schulder
,
M.
, and
Mehta
,
A. D.
,
2017
, “
Complication Avoidance in Laser Interstitial Thermal Therapy: Lessons Learned
,”
J. Neurosurg.
,
126
(
4
), pp.
1238
1245
.10.3171/2016.3.JNS152147
7.
Webster
,
R. J.
,
Okamura
,
A. M.
, and
Cowan
,
N. J.
,
2006
, “
Toward Active Cannulas: Miniature Snake-Like Surgical Robots
,”
IEEE International Conference on Intelligent Robots and Systems
, Beijing, China, Oct. 9–15, pp.
2857
2863
.10.1109/IROS.2006.282073
8.
Rucker
,
D. C.
, and
Webster
,
R. J.
,
2009
, “
Parsimonious Evaluation of Concentric-Tube Continuum Robot Equilibrium Conformation
,”
IEEE Trans. Biomed. Eng.
,
56
(
9
), pp.
2308
2311
.10.1109/TBME.2009.2025135
9.
Burgner-Kahrs
,
J.
,
Rucker
,
D. C.
, and
Choset
,
H.
,
2015
, “
Continuum Robots for Medical Applications: A Survey
,”
IEEE Trans. Rob.
,
31
(
6
), pp.
1261
1280
.10.1109/TRO.2015.2489500
10.
Gilbert
,
H. B.
,
Neimat
,
J.
, and
Webster
,
R. J.
,
2015
, “
Concentric Tube Robots as Steerable Needles: Achieving Follow-the-Leader Deployment
,”
IEEE Trans. Rob.
,
31
(
2
), pp.
246
258
.10.1109/TRO.2015.2394331
11.
Orekhov
,
A. L.
,
Abah
,
C.
, and
Simaan
,
N.
,
2018
, “
Snake-Like Robots for Minimally Invasive, Single-Port, and Intraluminal Surgeries
,”
The Encyclopedia of Medical Robotics
,
R.
Patel
, ed.,
World Scientific
, Singapore, Chap. 8, pp.
203
243
.
12.
Lyons
,
L. A.
,
Webster
,
R. J.
, and
Alterovitz
,
R.
,
2010
, “
Planning Active Cannula Configurations Through Tubular Anatomy
,”
Proceedings–IEEE International Conference on Robotics and Automation
, Anchorage, AK, May 3–7, pp.
2082
2087
.10.1109/ROBOT.2010.5509442
13.
Graves
,
C. M.
,
Slocum
,
A.
,
Gupta
,
R.
, and
Walsh
,
C. J.
,
2012
, “
Towards a Compact Robotically Steerable Thermal Ablation Probe
,”
Proceedings–IEEE International Conference on Robotics and Automation
,
Saint Paul, MN, May 14–18, pp.
709
714
.10.1109/ICRA.2012.6225365
14.
Berns
,
M. S.
,
Tsai
,
E. Y.
,
Austin-Breneman
,
J.
,
Schulmeister
,
J. C.
,
Sung
,
E.
,
Ozaki
,
C. K.
, and
Walsh
,
C. J.
, “
Single Entry Tunneler [SET] for Hemodialysis Graft Procedures
,”
ASME J. Med. Devices
, 5(2), p.
027524
.10.1115/1.3590704
15.
Engh
,
J. A.
,
Minhas
,
D. S.
,
Kondziolka
,
D.
, and
Riviere
,
C. N.
,
2010
, “
Percutaneous Intracerebral Navigation by Duty-Cycled Spinning of Flexible Bevel-Tipped Needles
,”
Neurosurgery
,
67
(
4
), pp.
1117
1123
.10.1227/NEU.0b013e3181ec1551
16.
Burgner
,
J.
,
Swaney
,
P. J.
,
Lathrop
,
R. A.
,
Weaver
,
K. D.
, and
Webster
,
R. J.
,
2013
, “
Debulking From Within: A Robotic Steerable Cannula for Intracerebral Hemorrhage Evacuation
,”
IEEE Trans. Biomed. Eng.
,
60
(
9
), pp.
2567
2575
.10.1109/TBME.2013.2260860
17.
Dadey
,
D. Y.
,
Kamath
,
A. A.
,
Smyth
,
M. D.
,
Chicoine
,
M. R.
,
Leuthardt
,
E. C.
, and
Kim
,
A. H.
,
2016
, “
Utilizing Personalized Stereotactic Frames for Laser Interstitial Thermal Ablation of Posterior Fossa and Mesiotemporal Brain Lesions: A Single-Institution Series
,”
Neurosurg. Focus
,
41
(
4
), p.
E4
.10.3171/2016.7.FOCUS16207
18.
North
,
R. Y.
,
Raskin
,
J. S.
, and
Curry
,
D. J.
,
2017
, “
MRI-Guided Laser Interstitial Thermal Therapy for Epilepsy,
Neurosurgery Clinics of North America
, 28(4), pp.
545
557
.10.1016/j.nec.2017.06.001
19.
Rieke
,
V.
, and
Pauly
,
K. B.
,
2008
, “
MR Thermometry,
J. Magn. Reson. Imaging
, 27(2), pp.
376
390
.
20.
Salem
,
U.
,
Kumar
,
V. A.
,
Madewell
,
J. E.
,
Schomer
,
D. F.
,
De Almeida Bastos
,
D. C.
,
Zinn
,
P. O.
,
Weinberg
,
J. S.
,
Rao
,
G.
,
Prabhu
,
S. S.
, and
Colen
,
R. R.
,
2019
, “
Neurosurgical Applications of MRI Guided Laser Interstitial Thermal Therapy (LITT),
Cancer Imag.
, 19(1), p.
65
.10.1186/s40644-019-0250-4
21.
Carpentier
,
A.
,
Chauvet
,
D.
,
Reina
,
V.
,
Beccaria
,
K.
,
Leclerq
,
D.
,
McNichols
,
R. J.
,
Gowda
,
A.
,
Cornu
,
P.
, and
Delattre
,
J. Y.
,
2012
, “
MR-Guided Laser-Induced Thermal Therapy (LITT) for Recurrent Glioblastomas
,”
Lasers Surg. Med.
,
44
(
5
), pp.
361
368
.10.1002/lsm.22025
22.
Mohammadi
,
A. M.
, and
Schroeder
,
J. L.
,
2014
, “
Laser Interstitial Thermal Therapy in Treatment of Brain Tumors-the NeuroBlate System
,”
Expert Rev. Med. Devices
,
11
(
2
), pp.
109
119
.10.1586/17434440.2014.882225
23.
Durall
,
I.
,
Diaz-Bertrana
,
M. C.
,
Puchol
,
J. L.
, and
Franch
,
J.
,
2003
, “
Radiographic Findings Related to Interlocking Nailing: Windshield-Wiper Effect, and Locking Screw Failure
,”
Vet. Comp. Orthop. Traumatol.
,
16
(
4
), pp.
217
222
.10.1055/s-0038-1632783
24.
Burgner
,
J.
,
Swaney
,
P. J.
,
Bruns
,
T. L.
,
Clark
,
M. S.
,
Rucker
,
D. C.
,
Burdette
,
E. C.
, and
Webster
,
R. J.
,
2012
, “
An Autoclavable Steerable Cannula Manual Deployment Device: Design and Accuracy Analysis
,”
J. Med. Devices, Trans. ASME
,
6
(
4
), p.
11
.10.1115/1.4007944
25.
Rucker
,
D. C.
,
Das
,
J.
,
Gilbert
,
H. B.
,
Swaney
,
P. J.
,
Miga
,
M. I.
,
Sarkar
,
N.
, and
Webster
,
R. J.
,
2013
, “
Sliding Mode Control of Steerable Needles
,”
IEEE Trans. Rob.
,
29
(
5
), pp.
1289
1299
.10.1109/TRO.2013.2271098
26.
Rezapour
,
M.
,
Leuthardt
,
E. C.
, and
Gorlewicz
,
J. L.
,
2016
, “
Design of a Steerable Guide for Laser Interstitial Thermal Therapy of Brain Tumors1
,”
J. Med. Devices
,
10
(
3
), p.
8
.10.1115/1.4033786
27.
Smith
,
S. A.
, and
Hodgson
,
D. E.
,
2003
, “
Shape Setting Nitinol
,”
Medical Device Materials–Proceedings of the Materials and Processes for Medical Devices Conference 2003
, Anaheim, CA, Sept. 8–10, pp.
266
270
.
28.
Gilbert
,
H. B.
, and
Webster
,
R. J.
,
2016
, “
Rapid, Reliable Shape Setting of Superelastic Nitinol for Prototyping Robots
,”
IEEE Rob. Autom. Lett.
,
1
(
1
), pp.
98
105
.10.1109/LRA.2015.2507706
29.
Rucker
,
D. C.
, and
Webster
,
R. J.
,
2008
, “
Mechanics-Based Modeling of Bending and Torsion in Active Cannulas
,”
Proceedings of the 2nd Biennial IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, BioRob 2008
, Scottsdale, AZ, Oct. 19–22, pp.
704
709
.10.1109/BIOROB.2008.4762918
30.
Drobny
,
J. G.
, and
Rapra Technology Limited
,
2006
,
Fluoroplastics
,
Rapra Technology Ltd
., Shropshire, UK.
31.
Amanov
,
E.
,
Nguyen
,
T.-D.
, and
Burgner-Kahrs
,
J.
,
2015
, “
Additive Manufacturing of Patient-Specific Tubular Continuum Manipulators
,”
Medical Imaging 2015: Image-Guided Procedures, Robotic Interventions, and Modeling
, SPIE, Orlando, FL, Feb. 21–26, Vol.
9415
, p.
94151P
.10.1117/12.2081999
32.
Morimoto
,
T. K.
,
Greer
,
J. D.
,
Hawkes
,
E. W.
,
Hsieh
,
M. H.
, and
Okamura
,
A. M.
,
2018
, “
Toward the Design of Personalized Continuum Surgical Robots
,”
Ann. Biomed. Eng.
,
46
(
10
), pp.
1522
1533
.10.1007/s10439-018-2062-2
33.
Gladman
,
A. S.
,
Garcia-Leiner
,
M.
, and
Sauer-Budge
,
A. F.
,
Polymer Science and Materials Chemistry, Exponent, Inc. 9 Strathmore Rd., Natick, MA USA
2019
, “
Emerging Polymeric Materials in Additive Manufacturing for Use in Biomedical Applications
,”
AIMS Bioeng.
,
6
(
1
), pp.
1
20
.10.3934/bioeng.2019.1.1
34.
Laborde
,
L.
,
Zepp
,
M.
, and
Hirneisen
,
A.
,
2012
, “
Let's Preserve: Ingredients Used in Home Food Preservation,
” The Pennsylvania State University, University Park, PA.
35.
Hoffmann
,
A.
,
Stoffel
,
M. H.
,
Nitzsche
,
B.
,
Lobsien
,
D.
,
Seeger
,
J.
,
Schneider
,
H.
, and
Boltze
,
J.
,
2014
, “
The Ovine Cerebral Venous System: Comparative Anatomy, Visualization, and Implications for Translational Research
,”
PLoS ONE
,
9
(
4
), p.
e92990
.10.1371/journal.pone.0092990
36.
Morosanu
,
C. O.
,
Nicolae
,
L.
,
Moldovan
,
R.
,
Farcasanu
,
A. S.
,
Filip
,
G. A.
, and
Florian
,
I. S.
,
2019
, “
Neurosurgical Cadaveric and In Vivo Large Animal Training Models for Cranial and Spinal Approaches and Techniques–A Systematic Review of the Current Literature,
Neurologia i Neurochirurgia Polska
, 53(1), pp.
8
17
.10.5603/PJNNS.a2019.0001
37.
Hamamcioglu
,
M. K.
,
Hicdonmez
,
T.
,
Tiryaki
,
M.
, and
Cobanoglu
,
S.
,
2008
, “
A Laboratory Training Model in Fresh Cadaveric Sheep Brain for Microneurosurgical Dissection of Cranial Nerves in Posterior Fossa
,”
Br. J. Neurosurg.
,
22
(
6
), pp.
769
771
.10.1080/02688690802477573
You do not currently have access to this content.