Any articulated system of rigid bodies defines a statically equivalent serial chain (SESC). The SESC is a virtual chain that terminates at the center of mass (CoM) of the original system of bodies. An SESC may be generated experimentally without knowing the mass, CoM, or length of each link in the system given that its joint angles and overall CoM may be measured. This paper presents three developments toward recognizing the SESC as a practical modeling technique. Two of the three developments improve utilizing the technique in practical applications where the arrangement of the joints impacts the derivation of the SESC. The final development provides insight into the number of poses needed to create a usable SESC in the presence of data collection errors. First, modifications to a matrix necessary in computing the SESC are proposed, followed by the experimental validation of SESC modeling. Second, the problem of generating an SESC experimentally when the system of bodies includes a mass fixed in the ground frame are presented and a remedy is proposed for humanoid-like systems. Third, an investigation of the error of the experimental SESC versus the number of data readings collected in the presence of errors in joint readings and CoM data is conducted. By conducting the method on three different systems with various levels of data error, a general form of the function for estimating the error of the experimental SESC is proposed.

References

1.
Fisher
,
O.
,
1902
, “
Über die reduzierten systeme und die hauptpunkte der glieder eines gelenkmechanismus
,”
Zeitschrift für angewandte Mathematik und Physik
,
47
, pp.
429
466
.
2.
Lowen
,
G.
, and
Berkof
,
R.
,
1968
, “
Survey of Investigations Into the Balancing of Linkages
,”
J. Mech.
,
3
(
4
), pp.
221
231
.10.1016/0022-2569(68)90001-3
3.
Espiau
,
B.
, and
Boulic
,
R.
,
1998
, “
On the Computation and Control of the Mass Center of Articulated Chains
,” INRIA, Montbonnot St Martin, France, Report No. RR-3479.
4.
Cotton
,
S.
,
Murray
,
A.
, and
Fraisse
,
P.
,
2008
, “
Statically Equivalent Serial Chains for Modeling the Center of Mass of Humanoid Robots
,”
8th IEEE-RAS International Conference on Human Robotics
(
Humanoids 2008
), Daejeon, South Korea, Dec. 1–3, pp.
138
144
.10.1109/ICHR.2008.4755958
5.
Cotton
,
S.
,
Murray
,
A.
, and
Fraisse
,
P.
,
2009
, “
Estimation of the Center of Mass Using Statically Equivalent Serial Chain Modeling
,”
ASME
Paper No. DETC2009-86227.10.1115/DETC2009-86227
6.
Cotton
,
S.
,
Murray
,
A.
, and
Fraisse
,
P.
,
2009
, “
Estimation of the Center of Mass: From Humanoid Robots to Human Beings
,”
IEEE/ASME Trans. Mechatronics
,
14
(
6
), pp.
707
712
.10.1109/TMECH.2009.2032687
7.
Cotton
,
S.
,
Vanoncini
,
M.
,
Fraisse
,
P.
,
Ramdani
,
N.
,
Demircan
,
E.
,
Murray
,
A.
, and
Keller
,
T.
,
2011
, “
Estimation of the Centre of Mass From Motion Capture and Force Plate Recordings: A Study on the Elderly
,”
Appl. Bionics Biomech.
,
8
(
1
), pp.
67
84
.10.3233/ABB-2011-0006
8.
Gonzalez
,
A.
,
Hayashibe
,
M.
, and
Fraisse
,
P.
,
2012
, “
Three Dimensional Visualization of the Statically Equivalent Serial Chain From Kinect Recording
,”
International Conference of the
IEEE Engineering in Medicine and Biology Society (
EMBC
), San Diego, CA, Aug. 28–Sept. 1, pp.
4843
4846
.10.1109/EMBC.2012.6347078
9.
Dubowsky
,
S.
, and
Papadopoulos
,
E.
,
1993
, “
The Kinematics, Dynamics, and Control of Free-Flying and Free-Floating Space Robotic Systems
,”
IEEE Trans. Rob. Autom.
,
9
(
5
), pp.
531
543
.10.1109/70.258046
10.
Vafa
,
Z.
, and
Dubowsky
,
S.
,
1990
. “
The Kinematics and Dynamics of Space Manipulators—The Virtual Manipulator Approach
,”
Int. J. Rob. Res.
,
9
(
4
), pp.
3
21
.10.1177/027836499000900401
11.
Vafa
,
Z.
, and
Dubowsky
,
S.
,
1990
, “
On the Dynamics of Space Manipulators Using the Virtual Manipulator, With Applications to Path Planning
,”
J. Astronaut. Sci.
,
38
(
4
), pp.
441
472
10.1007/978-1-4615-3588-1_3.
12.
Papadopoulos
,
E.
, and
Dubowsky
,
S.
,
1991
, “
On the Nature of Control Algorithms for Free-Floating Space Manipulators
,”
IEEE Trans. Rob. Autom.
,
7
(
6
), pp.
750
758
.10.1109/70.105384
13.
Agrawal
,
S.
,
Gardner
,
G.
, and
Pledgie
,
S.
,
2001
, “
Design and Fabrication of an Active Gravity Balanced Planar Mechanism Using Auxiliary Parallelograms
,”
ASME J. Mech. Des.
,
123
(
4
), pp.
525
528
.10.1115/1.1413771
14.
Hasan
,
S. S.
,
Robin
,
D. W.
,
Szurkus
,
D. C.
,
Ashmead
,
D. H.
,
Peterson
,
S. W.
, and
Shiavi
,
R. G.
,
1996
, “
Simultaneous Measurement of Body Center of Pressure and Center of Gravity During Upright Stance. Part I: Methods
,”
Gait Posture
,
4
(
1
), pp.
1
10
.10.1016/0966-6362(95)01030-0
15.
Winter
,
D.
,
1995
, “
Human Balance and Posture Control During Standing and Walking
,”
Gait Posture
,
3
(
4
), pp.
193
214
.10.1016/0966-6362(96)82849-9
16.
Winter
,
D.
,
2009
,
Biomechanics and Motor Control of Human Movement
, 4th ed.,
Wiley
,
New York
.10.1002/9780470549148
17.
Leva
,
P.
,
1996
, “
Adjustments to Zatsiorsky–Seluyanov's Inertia Parameters
,”
J. Biomech.
,
29
(
9
), pp.
1223
1230
.10.1016/0021-9290(95)00178-6
18.
Zatsiorsky
,
V.
, and
Seluyanov
,
V.
,
1983
, “
The Mass and Inertia Characteristics of the Main Segments of the Human Body
,”
Biomechanics
,
VIII
(
B
), pp.
1152
1159
.
19.
Cavagna
,
G. A.
,
1975
, “
Force Platforms as Ergometers
,”
J. Appl. Physiol.
,
39
(
1
), pp.
174
179
.
20.
Shimba
,
T.
,
1984
, “
An Estimation of Center of Gravity From Force Platform Data
,”
J. Biomech.
,
17
(
1
), pp.
53
60
.10.1016/0021-9290(84)90080-0
21.
King
,
D.
, and
Zatsiorsky
,
V.
,
1997
, “
Extracting Gravity Line Displacement From Stabilographic Recordings
,”
Gait Posture
,
6
(
1
), pp.
27
38
.10.1016/S0966-6362(96)01101-0
22.
Brenière
,
Y.
,
1996
, “
Why We Walk the Way We Do?
,”
J. Mot. Behav.
,
28
(
4
), pp.
291
298
.10.1080/00222895.1996.10544598
23.
Caron
,
O.
,
Faure
,
B.
, and
Brenière
,
Y.
,
1997
, “
Estimating the Centre of Gravity of the Body on the Basis of the Centre of Pressure in Standing Posture
,”
J. Biomech.
,
30
(
11–12
), pp.
1169
1171
.10.1016/S0021-9290(97)00094-8
24.
Schepers
,
H. M.
,
van Asseldonk
,
E. H. F.
,
Buurke
,
J. H.
, and
Veltink
,
P. H.
,
2009
, “
Ambulatory Estimation of Center of Mass Displacement During Walking
,”
IEEE Trans. Biomed. Eng.
,
56
(
4
), pp.
1189
1195
.10.1109/TBME.2008.2011059
25.
Betker
,
A.
,
Moussaviand
,
Z.
, and
Szturm
,
T.
,
2004
, “
Center of Mass Function Approximation
,”
26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
(
IEMBS '04
), San Francisco, CA, Sept. 1–5, pp.
687
690
.10.1109/IEMBS.2004.1403251
26.
Betker
,
A.
,
Szturm
,
T.
, and
Moussaviand
,
Z.
,
2003
, “
Application of Feedforward Backpropagation Neural Network to Center of Mass Estimation for Use in a Clinical Environment
,”
25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
(
IEMBS
), Cancun, Mexico, Sept. 17–21, pp.
2714
2717
.10.1109/IEMBS.2003.1280477
27.
Eames
,
M.
,
Cosgrove
,
A.
, and
Baker
,
R.
,
1999
, “
Comparing Methods of Estimating the Total Body Centre of Mass in Three-Dimensions in Normal and Pathological Gaits
,”
Hum. Mov. Sci.
,
18
(
5
), pp.
637
646
.10.1016/S0167-9457(99)00022-6
28.
Gard
,
S. A.
,
Miff
,
S. C.
, and
Kuo
,
A. D.
,
2004
, “
Comparison of Kinematic and Kinetic Methods for Computing the Vertical Motion of the Body Center of Mass During Walking
,”
Hum. Mov. Sci.
,
22
(
6
), pp.
597
610
.10.1016/j.humov.2003.11.002
29.
Gutierrez-Farewik
,
E. M.
,
Bartonek
,
A.
, and
Saraste
,
H.
,
2006
, “
Comparison and Evaluation of Two Common Methods to Measure Center of Mass Displacement in Three Dimensions During Gait
,”
Hum. Mov. Sci.
,
25
(
2
), pp.
238
256
.10.1016/j.humov.2005.11.001
30.
Thirunarayan
,
M. A.
,
Kerrigan
,
D. C.
,
Rabuffetti
,
M.
,
Croce
,
U. D.
, and
Saini
,
M.
,
1996
, “
Comparison of Three Methods for Estimating Vertical Displacement of Center of Mass During Level Walking in Patients
,”
Gait Posture
,
4
(
4
), pp.
306
314
.10.1016/0966-6362(95)01058-0
31.
Lafond
,
D.
,
Duarte
,
M.
, and
Prince
,
F.
,
2004
, “
Comparison of Three Methods to Estimate the Center of Mass During Balance Assessment
,”
J. Biomech.
,
37
(
9
), pp.
1421
1426
.10.1016/S0021-9290(03)00251-3
32.
Nigg
,
B. M.
, and
Herzog
,
W.
,
1999
,
Biomechanics of the Musculo-Skeletal System
, Vol.
192
,
Wiley
,
New York
.
33.
Lee
,
S.-H.
, and
Terzopoulos
,
D.
,
2008
, “
Spline Joints for Multibody Dynamics
,” 35th International Conference and Exhibition on Computer Graphics and Interactive Techniques (
SIGGRAPH 2008
),
Los Angeles
,
CA
, Aug. 11–15, Paper No. 22.10.1145/1399504.1360621
34.
Zatsiorsky
,
V.
,
1998
,
Kinematics of Human Motion
,
Human Kinetics
, Champaign, IL.
35.
Shao
,
W.
, and
Ng-Thow-Hing
,
V.
,
2003
, “
A General Joint Component Framework for Realistic Articulation in Human Characters
,”
Proceedings of the 2003 Symposium on Interactive 3D Graphics
(
I3D ’03
), Monterey, CA, Apr. 27–30, pp.
11
18
.10.1145/641485.641486
36.
Gonzalez
,
A.
,
Hayashibe
,
M.
, and
Fraisse
,
P.
,
2013
, “
Online Identification and Visualization of the Statically Equivalent Serial Chain Via Constrained Kalman Filter
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Karlsruhe, Germany, May 6–10, pp.
5323
5328
.10.1109/ICRA.2013.6631339
37.
McCarthy
,
J.
,
1990
,
An Introduction to Theoretical Kinematics
,
MIT Press
, Cambridge, MA.
38.
James
,
M.
,
1978
, “
The Generalised Inverse
,”
Math. Gaz.
,
62
(
420
), pp.
109
114
.10.2307/3617665
You do not currently have access to this content.