In this paper, a visual graphic approach is presented for the mobility and singularity analysis of mechanisms with no helical pair. The presented method is established upon the reciprocal screw system theory. Using the visual graphic approach, the mobility and singularity analysis mainly requires applying a few simple rules and involves into no formula derivation. As a case study, the mobility and singularity analysis is implemented for a class of two degrees of freedom (DOF) rotational parallel mechanisms (RPMs), including the Omni-Wrist III with four limbs and its two derived architectures with three limbs called the T-type and Δ-type RPMs. The Δ-type one is found to has kinematic properties close to the Omni-Wrist III.
Issue Section:
Research Papers
References
1.
Sofka
, J.
, Skormin
, V.
, Nikulin
, V.
, and Nicholson
, D. J.
, 2006, “Omni-Wrist III-A New Generation of Pointing Devices. Part I. Laser Beam Steering Devices-Mathematical Modeling
,” IEEE Trans. Aerosp. Electron. Syst.
, 42
(2
), pp. 718
–725
.2.
Gosselin
, C.
, and Caron
, F.
, 1999, “Two-Degree-of-Freedom Spherical Orienting Device
,” U.S. Patent No. 5,966,991.3.
Dunlop
, G.
, and Jones
, T.
, 1999, “Position Analysis of a Two DOF Parallel Mechanism—The Canterbury Tracker
,” Mech. Mach. Theory
, 34
(4
), pp. 599
–614
.4.
Gogu
, G.
, 2005, “Fully-Isotropic Over-Constrained Parallel Wrists With Two Degrees of Freedom
,” Proceedings of the IEEE International Conference on Robotics and Automation, Barcelona, Spain, pp. 4014
–4019
.5.
Carricato
, M.
, and Parenti-Castelli
, V.
, 2004, “A Novel Fully Decoupled Two-Degrees-of-Freedom Parallel Wrist
,” Int. J. Rob. Res.
, 23
(6
), pp. 661
–667
.6.
Amine
, S.
, Masouleh
, M. T.
, Caro
, S.
, Wenger
, P.
, and Gosselin
, C.
, 2012, “Singularity Conditions of 3T1R Parallel Manipulators With Identical Limb Structures
,” J. Mech. Rob.
, 4
(1
), p. 011011
.7.
Pendar
, H.
, Mahnama
M.
, and Zohoor
, H.
, 2011, “Singularity Analysis of Parallel Manipulators Using Constraint Plane Method
,” Mech. Mach. Theory
, 46
(1
), pp. 33
–43
.8.
Kong
, X. W.
, Yu
, J. J.
, and Gosselin
, C. M.
, 2011, “Geometric Interpretation of Singularity Configurations of a Class of Parallel Manipulators
,” ASME International DETC2011, Paper No. DETC2011-48165.9.
Huang
, Z.
, Kong
, L. F.
, and Fang
, Y. F.
, 1997, Mechanism Theory of Parallel Robotic Manipulator and Control
, China Mechanical Press
, Beijing
(in Chinese).10.
Dai
, J. S.
, Huang
, Z.
, and Lipkin
, H.
, 2006, “Mobility of Over-Constrained Parallel Mechanisms
,” ASME J. Mech. Des.
, 128
(1
), pp. 220
–229
.11.
Huang
, Z.
, Liu
, J. F.
, and Zeng
, D. X.
, 2009, “A General Methodology for Mobility Analysis of Mechanisms Based on Constraint Screw Theory
,” Sci. China Ser. E: Technol. Sci.
, 52
(5
), pp. 1337
–1347
.12.
Rico
, J. M.
, and Ravani
, B.
, 2003, “On Mobility Analysis of Linkages Using Group Theory
,” ASME J. Mech. Des.
, 125
(1
), pp. 70
–80
.13.
Rico
, J. M.
, Gallardo
, J.
, and Ravani
, B.
, 2003, “Lie Algebra and the Mobility of Kinematic Chains
,” J. Rob. Syst.
, 20
(8
), pp. 477
–499
.14.
Gogu
, G.
, 2005, “Chebychev-Grübler-Kutzbach’s Criterion for Mobility Calculation of Multi-Loop Mechanisms Revisited via Theory of Linear Transformations
,” Eur. J. Mech. A/Solids
, 24
(3
), pp. 427
–441
.15.
Kong
, X.
, and Gosselin
, C.
, 2007, “Appendix B: Mobility Analysis of Parallel Mechanisms
,” Type Synthesis of Parallel Mechanisms
, Springer
, The Netherlands
, pp. 235
–246
.16.
Zhao
, J. S.
, Zhou
, K.
, and Feng
, Z. J.
, 2004, “A Theory of Degrees of Freedom for Mechanisms
,” Mech. Mach. Theory
, 39
(6
), pp. 621
–643
.17.
Phillips
, J. R.
, 1984, Freedom of Machinery, Volume 1: Introducing Screw Theory
, Cambridge University Press
, Cambridge
.18.
Phillips
, J. R.
, 1990, Freedom of Machinery, Volume 2: Screw Theory Exemplified
, Cambridge University Press
, Cambridge
.19.
Blanding
, D. L.
, 1999, Exact Constraint: Machine Design Using Kinematic Processing
, ASME Press
, New York
.20.
Hopkins
, J. B.
, and Culpepper
, M. L.
, 2010, “Synthesis of Multi-Degree of Freedom, Parallel Flexure System Concepts via Freedom and Constraint Topology (FACT) Part I: Principles
,” Precis. Eng.
, 34
(2
), pp. 259
–270
.21.
Hopkins
, J. B.
, and Culpepper
, M. L.
, 2010, “Synthesis of Multi-Degree of Freedom, Parallel Flexure System Concepts via Freedom and Constraint Topology (FACT) Part II: Practice
,” Precis. Eng.
,” 34
(2
). 271
–278
.22.
Pei
, X.
, and Yu
, J. J.
, 2011, “A Visual Graphic Approach for Mobility Analysis of Parallel Mechanisms
,” Front. Mech. Eng.
, 6
(1
), pp. 92
–95
.23.
Yu
, J. J.
, Li
, S. Z.
, Pei
, X.
, Bi
, S.
, and Zong
, G.
, 2011, “A Unified Approach to Type Synthesis of Both Rigid and Flexure Parallel Mechanisms
,” Sci. China Ser. E: Technol. Sci.
, 54
(5
), pp. 1206
–1219
.24.
Merlet
, J.-P.
, 1989, “Singular Configurations of Parallel Manipulators and Grassmann Geometry
,” Int. J. Rob. Res.
, 8
(5
), pp. 45
–56
.25.
Hao
, F.
, and McCarthy
, J. M.
, 1998, “Conditions for Line-Based Singularities in Spatial Platform Manipulators
,” J. Rob. Syst.
, 15
(1
), pp. 43
–55
.26.
Isobe
, H.
, Sone
K.
, and Ishlkawa
, T.
, 2009, “Linkage System
,” U.S. Patent No. 7,472,622B2.27.
Ball
, R. S.
, 1990, A Treatise on the Theory of Screws
, Cambridge University Press
, Cambridge, UK
.28.
Lipkin
, H.
, and Duffy
, J.
, 1985, “The Elliptic Polarity of Screws
,” J. Mech. Trans. Autom. Des.
, 107
(3
), pp. 377
–386
.29.
Maxwell
, J. C.
, 1890, General Considerations Concerning Scientific Apparatus
, Dover Press
, UK
.30.
Hunt
, K. H.
, 1978, Kinematic Geometry of Mechanisms
, Oxford University Press
, London, UK
.31.
Gibson
, C. G.
, and Hunt
, K. H.
, 1990, “Geometry of Screw Systems-I, Classification of Screw Systems
,” Mech. Mach. Theory
, 25
(1
), pp. 1
–10
.32.
Gibson
, C. G.
, and Hunt
, K. H.
, 1990, “Geometry of Screw Systems-II, Classification of Screw Systems
,” Mech. Mach. Theory
, 25
(1
), pp. 11
–27
.Copyright © 2012
by American Society of Mechanical Engineers
You do not currently have access to this content.