In this paper, a visual graphic approach is presented for the mobility and singularity analysis of mechanisms with no helical pair. The presented method is established upon the reciprocal screw system theory. Using the visual graphic approach, the mobility and singularity analysis mainly requires applying a few simple rules and involves into no formula derivation. As a case study, the mobility and singularity analysis is implemented for a class of two degrees of freedom (DOF) rotational parallel mechanisms (RPMs), including the Omni-Wrist III with four limbs and its two derived architectures with three limbs called the T-type and Δ-type RPMs. The Δ-type one is found to has kinematic properties close to the Omni-Wrist III.

References

1.
Sofka
,
J.
,
Skormin
,
V.
,
Nikulin
,
V.
, and
Nicholson
,
D. J.
, 2006, “
Omni-Wrist III-A New Generation of Pointing Devices. Part I. Laser Beam Steering Devices-Mathematical Modeling
,”
IEEE Trans. Aerosp. Electron. Syst.
,
42
(
2
), pp.
718
725
.
2.
Gosselin
,
C.
, and
Caron
,
F.
, 1999, “
Two-Degree-of-Freedom Spherical Orienting Device
,” U.S. Patent No. 5,966,991.
3.
Dunlop
,
G.
, and
Jones
,
T.
, 1999, “
Position Analysis of a Two DOF Parallel Mechanism—The Canterbury Tracker
,”
Mech. Mach. Theory
,
34
(
4
), pp.
599
614
.
4.
Gogu
,
G.
, 2005, “
Fully-Isotropic Over-Constrained Parallel Wrists With Two Degrees of Freedom
,” Proceedings of the IEEE International Conference on Robotics and Automation, Barcelona, Spain, pp.
4014
4019
.
5.
Carricato
,
M.
, and
Parenti-Castelli
,
V.
, 2004, “
A Novel Fully Decoupled Two-Degrees-of-Freedom Parallel Wrist
,”
Int. J. Rob. Res.
,
23
(
6
), pp.
661
667
.
6.
Amine
,
S.
,
Masouleh
,
M. T.
,
Caro
,
S.
,
Wenger
,
P.
, and
Gosselin
,
C.
, 2012, “
Singularity Conditions of 3T1R Parallel Manipulators With Identical Limb Structures
,”
J. Mech. Rob.
,
4
(
1
), p.
011011
.
7.
Pendar
,
H.
,
Mahnama
M.
, and
Zohoor
,
H.
, 2011, “
Singularity Analysis of Parallel Manipulators Using Constraint Plane Method
,”
Mech. Mach. Theory
,
46
(
1
), pp.
33
43
.
8.
Kong
,
X. W.
,
Yu
,
J. J.
, and
Gosselin
,
C. M.
, 2011, “
Geometric Interpretation of Singularity Configurations of a Class of Parallel Manipulators
,” ASME International DETC2011, Paper No. DETC2011-48165.
9.
Huang
,
Z.
,
Kong
,
L. F.
, and
Fang
,
Y. F.
, 1997,
Mechanism Theory of Parallel Robotic Manipulator and Control
,
China Mechanical Press
,
Beijing
(in Chinese).
10.
Dai
,
J. S.
,
Huang
,
Z.
, and
Lipkin
,
H.
, 2006, “
Mobility of Over-Constrained Parallel Mechanisms
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
220
229
.
11.
Huang
,
Z.
,
Liu
,
J. F.
, and
Zeng
,
D. X.
, 2009, “
A General Methodology for Mobility Analysis of Mechanisms Based on Constraint Screw Theory
,”
Sci. China Ser. E: Technol. Sci.
,
52
(
5
), pp.
1337
1347
.
12.
Rico
,
J. M.
, and
Ravani
,
B.
, 2003, “
On Mobility Analysis of Linkages Using Group Theory
,”
ASME J. Mech. Des.
,
125
(
1
), pp.
70
80
.
13.
Rico
,
J. M.
,
Gallardo
,
J.
, and
Ravani
,
B.
, 2003, “
Lie Algebra and the Mobility of Kinematic Chains
,”
J. Rob. Syst.
,
20
(
8
), pp.
477
499
.
14.
Gogu
,
G.
, 2005, “
Chebychev-Grübler-Kutzbach’s Criterion for Mobility Calculation of Multi-Loop Mechanisms Revisited via Theory of Linear Transformations
,”
Eur. J. Mech. A/Solids
,
24
(
3
), pp.
427
441
.
15.
Kong
,
X.
, and
Gosselin
,
C.
, 2007, “
Appendix B: Mobility Analysis of Parallel Mechanisms
,”
Type Synthesis of Parallel Mechanisms
,
Springer
,
The Netherlands
, pp.
235
246
.
16.
Zhao
,
J. S.
,
Zhou
,
K.
, and
Feng
,
Z. J.
, 2004, “
A Theory of Degrees of Freedom for Mechanisms
,”
Mech. Mach. Theory
,
39
(
6
), pp.
621
643
.
17.
Phillips
,
J. R.
, 1984,
Freedom of Machinery, Volume 1: Introducing Screw Theory
,
Cambridge University Press
,
Cambridge
.
18.
Phillips
,
J. R.
, 1990,
Freedom of Machinery, Volume 2: Screw Theory Exemplified
,
Cambridge University Press
,
Cambridge
.
19.
Blanding
,
D. L.
, 1999,
Exact Constraint: Machine Design Using Kinematic Processing
,
ASME Press
,
New York
.
20.
Hopkins
,
J. B.
, and
Culpepper
,
M. L.
, 2010, “
Synthesis of Multi-Degree of Freedom, Parallel Flexure System Concepts via Freedom and Constraint Topology (FACT) Part I: Principles
,”
Precis. Eng.
,
34
(
2
), pp.
259
270
.
21.
Hopkins
,
J. B.
, and
Culpepper
,
M. L.
, 2010, “
Synthesis of Multi-Degree of Freedom, Parallel Flexure System Concepts via Freedom and Constraint Topology (FACT) Part II: Practice
,”
Precis. Eng.
,”
34
(
2
).
271
278
.
22.
Pei
,
X.
, and
Yu
,
J. J.
, 2011, “
A Visual Graphic Approach for Mobility Analysis of Parallel Mechanisms
,”
Front. Mech. Eng.
,
6
(
1
), pp.
92
95
.
23.
Yu
,
J. J.
,
Li
,
S. Z.
,
Pei
,
X.
,
Bi
,
S.
, and
Zong
,
G.
, 2011, “
A Unified Approach to Type Synthesis of Both Rigid and Flexure Parallel Mechanisms
,”
Sci. China Ser. E: Technol. Sci.
,
54
(
5
), pp.
1206
1219
.
24.
Merlet
,
J.-P.
, 1989, “
Singular Configurations of Parallel Manipulators and Grassmann Geometry
,”
Int. J. Rob. Res.
,
8
(
5
), pp.
45
56
.
25.
Hao
,
F.
, and
McCarthy
,
J. M.
, 1998, “
Conditions for Line-Based Singularities in Spatial Platform Manipulators
,”
J. Rob. Syst.
,
15
(
1
), pp.
43
55
.
26.
Isobe
,
H.
,
Sone
K.
, and
Ishlkawa
,
T.
, 2009, “
Linkage System
,” U.S. Patent No. 7,472,622B2.
27.
Ball
,
R. S.
, 1990,
A Treatise on the Theory of Screws
,
Cambridge University Press
,
Cambridge, UK
.
28.
Lipkin
,
H.
, and
Duffy
,
J.
, 1985, “
The Elliptic Polarity of Screws
,”
J. Mech. Trans. Autom. Des.
,
107
(
3
), pp.
377
386
.
29.
Maxwell
,
J. C.
, 1890,
General Considerations Concerning Scientific Apparatus
,
Dover Press
,
UK
.
30.
Hunt
,
K. H.
, 1978,
Kinematic Geometry of Mechanisms
,
Oxford University Press
,
London, UK
.
31.
Gibson
,
C. G.
, and
Hunt
,
K. H.
, 1990, “
Geometry of Screw Systems-I, Classification of Screw Systems
,”
Mech. Mach. Theory
,
25
(
1
), pp.
1
10
.
32.
Gibson
,
C. G.
, and
Hunt
,
K. H.
, 1990, “
Geometry of Screw Systems-II, Classification of Screw Systems
,”
Mech. Mach. Theory
,
25
(
1
), pp.
11
27
.
You do not currently have access to this content.