This paper investigates the conditions in the design parameter space for the existence and distribution of the cusp locus for planar parallel manipulators. Cusp points make possible nonsingular assembly-mode changing motion, which increases the maximum singularity-free workspace. An accurate algorithm for the determination is proposed amending some imprecisions done by previous existing algorithms. This is combined with methods of cylindric algebraic decomposition, Gröbner bases, and discriminant varieties in order to partition the parameter space into cells with constant number of cusp points. These algorithms will allow us to classify a family of degenerate 3-RPR manipulators.

References

1.
Innocenti
,
C.
, and
Parenti-Castelli
,
V.
, 1998. “
Singularity-Free Evolution From One Configuration to Another in Serial and Fully-Parallel Manipulators
,”
ASME J. Mech. Des.
,
120
(
1
), pp.
73
79
.
2.
McAree
,
P. R.
, and
Daniel
,
R. W.
, 1999, “
An Explanation of Never-Special Assembly Changing Motions for 3-3 Parallel Manipulators
,”
Int. J. Rob. Res.
,
18
(
6
), pp.
556
574
.
3.
Zein
,
M.
,
Wenger
,
P.
, and
Chablat
,
D.
, 2007, “
Singular Curves in the Joint Space and Cusp Points of 3-RP¯R Parallel Manipulators
,”
Robotica
,
25
(
6
), pp.
717
724
.
4.
Husty
,
M. L.
, 2009, “
Non-Singular Assembly Mode Change in 3-RP¯R Parallel Manipulators
,”
Proceedings of the 5th International Workshop on Computational Kinematics
,
Springer
, pp.
51
60
.
5.
Kreuzer
,
M.
, and
Robbiano
,
L.
, 2000,
Computational Commutative Algebra 1
,
Springer
,
New York
.
6.
Lazard
,
D.
, and
Rouillier
,
F.
, 2007, “
Solving Parametric Polynomial Systems
,”
J. Symb. Comput.
,
42
(
6
), pp.
636
667
.
7.
Collins
,
G. E.
, 1975,
Quantifier Elimination for Real Closed Fields by Cylindrical Algebraic Decomposition
,
Springer
,
New York
.
8.
Chablat
,
D.
,
Moroz
,
G.
, and
Wenger
,
P.
, 2011, “
Uniqueness Domains and Non Singular Assembly Mode Changing Trajectories
,”
Proceedings of the 2011 IEEE International Conference on Robotics and Automation (ICRA)
, pp.
3946
3951
.
9.
Hunt
,
K.
, 1983, “
Structural Kinematics of In-Parallel Actuated Robot Arms
,”
ASME J. Mech., Transm., Autom. Des.
,
105
, pp.
705
712
.
10.
Gosselin
,
C.
,
Sefrioui
,
J.
, and
Richard
,
M.
, 1992, “
Solutions polynomiales au problème de la cinématique directe des manipulateurs parallèles plans à trois degrés de liberté
,”
Mech. Mach. Theory
,
27
(
2
), pp.
107
119
.
11.
Pennock
,
G.
, and
Kassner
,
D.
, 1990, “
Kinematic Analysis of a Planar Eight-Bar Linkage: Application to a Platform-Type Robot
,”
Proceedings of ASME 21st Biennial Mechanisms Conference
, pp.
37
43
.
12.
Kong
,
X.
, and
Gosselin
,
C.
, 2001, “
Forward Displacement Analysis of Third-Class Analytic 3-RP¯R Planar Parallel Manipulators
,”
Mech. Mach. Theory
,
36
, pp.
1009
1018
.
13.
Wenger
,
P.
, and
Chablat
,
D.
, 2009, “
Kinematic Analysis of a Class of Analytic Planar 3-RP¯R Parallel Manipulators
,”
Proceedings of the 5th International Workshop on Computational Kinematics
, pp.
43
50
.
14.
Wenger
,
P.
,
Chablat
,
D.
, and
Zein
,
M.
, 2007, “
Degeneracy Study of the Forward Kinematics of Planar 3-RP¯R Parallel Manipulators
,”
ASME J. Mech. Des.
,
129
(
12
), pp.
1265
1268
.
15.
Gosselin
,
C.
, and
Angeles
,
J.
, 1990, “
Singularity Analysis of Closed-Loop Kinematic Chains
,”
IEEE J. Rob. Autom.
,
6
(
3
), pp.
281
290
.
16.
Urízar
,
M.
,
Petuya
,
V.
,
Altuzarra
,
O.
, and
Hernández
,
A.
, 2011, “
On the Cuspidality of the Analytic 3-RP¯R
,”
Proceedings of IFToMM 13th World Congress in Mechanism and Machine Science
.
17.
Hernández
,
A.
,
Altuzarra
,
O.
,
Petuya
,
V.
, and
Macho
,
E.
, 2009, “
Defining Conditions for Nonsingular Transitions Between Assembly Modes
,”
IEEE Trans. Rob.
,
25
, pp.
1438
1447
.
18.
Moroz
,
G.
,
Rouillier
,
F.
,
Chablat
,
D.
, and
Wenger
,
P.
, 2010, “
On the Determination of Cusp Points of 3-RP¯R Parallel Manipulators
,”
Mech. Mach. Theory
,
45
, pp.
1555
1567
.
19.
Moroz
,
G.
, 2008, “
Sur la décomposition réelle et algébrique des systèmes dépendant de paramètres
,” Ph.D. thesis, Université Paris 6, France.
20.
Corvez
,
S.
, and
Rouillier
,
F.
, 2002, “
Using Computer Algebra Tools to Classify Serial Manipulators
,”
Automated Deduction in Geometry
, Vol. 2930,
F.
Winkler
, ed.,
Springer
,
pp.
31
43
.
21.
Rouillier
,
F.
, 1999, “
Solving Zero-Dimensional Systems Through the Rational Univariate Representation
,”
J. Appl. Algebra Eng. Commun. Comput.
,
9
(
5
), pp.
433
461
.
22.
Rouillier
,
F.
, and
Zimmermann
,
P.
, 2003, “
Efficient Isolation of Polynomial Real Roots
,”
J. Comput. Appl. Math.
,
162
(
1
), pp.
33
50
.
23.
Dolzmann
,
A.
,
Seidl
,
A.
, and
Sturm
,
T.
, 2004, “
Efficient Projection Orders for CAD
,”
Proceedings of the 2004 International Symposium on Symbolic and Algebraic Computation
, pp.
111
118
.
You do not currently have access to this content.