This paper investigates the conditions in the design parameter space for the existence and distribution of the cusp locus for planar parallel manipulators. Cusp points make possible nonsingular assembly-mode changing motion, which increases the maximum singularity-free workspace. An accurate algorithm for the determination is proposed amending some imprecisions done by previous existing algorithms. This is combined with methods of cylindric algebraic decomposition, Gröbner bases, and discriminant varieties in order to partition the parameter space into cells with constant number of cusp points. These algorithms will allow us to classify a family of degenerate 3-RPR manipulators.
Issue Section:
Research Papers
References
1.
Innocenti
, C.
, and Parenti-Castelli
, V.
, 1998. “Singularity-Free Evolution From One Configuration to Another in Serial and Fully-Parallel Manipulators
,” ASME J. Mech. Des.
, 120
(1
), pp. 73
–79
.2.
McAree
, P. R.
, and Daniel
, R. W.
, 1999, “An Explanation of Never-Special Assembly Changing Motions for 3-3 Parallel Manipulators
,” Int. J. Rob. Res.
, 18
(6
), pp. 556
–574
.3.
Zein
, M.
, Wenger
, P.
, and Chablat
, D.
, 2007, “Singular Curves in the Joint Space and Cusp Points of 3-RP¯R Parallel Manipulators
,” Robotica
, 25
(6
), pp. 717
–724
.4.
Husty
, M. L.
, 2009, “Non-Singular Assembly Mode Change in 3-RP¯R Parallel Manipulators
,” Proceedings of the 5th International Workshop on Computational Kinematics
, Springer
, pp. 51
–60
.5.
Kreuzer
, M.
, and Robbiano
, L.
, 2000, Computational Commutative Algebra 1
, Springer
, New York
.6.
Lazard
, D.
, and Rouillier
, F.
, 2007, “Solving Parametric Polynomial Systems
,” J. Symb. Comput.
, 42
(6
), pp. 636
–667
.7.
Collins
, G. E.
, 1975, Quantifier Elimination for Real Closed Fields by Cylindrical Algebraic Decomposition
, Springer
, New York
.8.
Chablat
, D.
, Moroz
, G.
, and Wenger
, P.
, 2011, “Uniqueness Domains and Non Singular Assembly Mode Changing Trajectories
,” Proceedings of the 2011 IEEE International Conference on Robotics and Automation (ICRA)
, pp. 3946
–3951
.9.
Hunt
, K.
, 1983, “Structural Kinematics of In-Parallel Actuated Robot Arms
,” ASME J. Mech., Transm., Autom. Des.
, 105
, pp. 705
–712
.10.
Gosselin
, C.
, Sefrioui
, J.
, and Richard
, M.
, 1992, “Solutions polynomiales au problème de la cinématique directe des manipulateurs parallèles plans à trois degrés de liberté
,” Mech. Mach. Theory
, 27
(2
), pp. 107
–119
.11.
Pennock
, G.
, and Kassner
, D.
, 1990, “Kinematic Analysis of a Planar Eight-Bar Linkage: Application to a Platform-Type Robot
,” Proceedings of ASME 21st Biennial Mechanisms Conference
, pp. 37
–43
.12.
Kong
, X.
, and Gosselin
, C.
, 2001, “Forward Displacement Analysis of Third-Class Analytic 3-RP¯R Planar Parallel Manipulators
,” Mech. Mach. Theory
, 36
, pp. 1009
–1018
.13.
Wenger
, P.
, and Chablat
, D.
, 2009, “Kinematic Analysis of a Class of Analytic Planar 3-RP¯R Parallel Manipulators
,” Proceedings of the 5th International Workshop on Computational Kinematics
, pp. 43
–50
.14.
Wenger
, P.
, Chablat
, D.
, and Zein
, M.
, 2007, “Degeneracy Study of the Forward Kinematics of Planar 3-RP¯R Parallel Manipulators
,” ASME J. Mech. Des.
, 129
(12
), pp. 1265
–1268
.15.
Gosselin
, C.
, and Angeles
, J.
, 1990, “Singularity Analysis of Closed-Loop Kinematic Chains
,” IEEE J. Rob. Autom.
, 6
(3
), pp. 281
–290
.16.
Urízar
, M.
, Petuya
, V.
, Altuzarra
, O.
, and Hernández
, A.
, 2011, “On the Cuspidality of the Analytic 3-RP¯R
,” Proceedings of IFToMM 13th World Congress in Mechanism and Machine Science
.17.
Hernández
, A.
, Altuzarra
, O.
, Petuya
, V.
, and Macho
, E.
, 2009, “Defining Conditions for Nonsingular Transitions Between Assembly Modes
,” IEEE Trans. Rob.
, 25
, pp. 1438
–1447
.18.
Moroz
, G.
, Rouillier
, F.
, Chablat
, D.
, and Wenger
, P.
, 2010, “On the Determination of Cusp Points of 3-RP¯R Parallel Manipulators
,” Mech. Mach. Theory
, 45
, pp. 1555
–1567
.19.
Moroz
, G.
, 2008, “Sur la décomposition réelle et algébrique des systèmes dépendant de paramètres
,” Ph.D. thesis, Université Paris 6, France.20.
Corvez
, S.
, and Rouillier
, F.
, 2002, “Using Computer Algebra Tools to Classify Serial Manipulators
,” Automated Deduction in Geometry
, Vol. 2930, F.
Winkler
, ed., Springer
, pp. 31
–43
.21.
Rouillier
, F.
, 1999, “Solving Zero-Dimensional Systems Through the Rational Univariate Representation
,” J. Appl. Algebra Eng. Commun. Comput.
, 9
(5
), pp. 433
–461
.22.
Rouillier
, F.
, and Zimmermann
, P.
, 2003, “Efficient Isolation of Polynomial Real Roots
,” J. Comput. Appl. Math.
, 162
(1
), pp. 33
–50
.23.
Dolzmann
, A.
, Seidl
, A.
, and Sturm
, T.
, 2004, “Efficient Projection Orders for CAD
,” Proceedings of the 2004 International Symposium on Symbolic and Algebraic Computation
, pp. 111
–118
.Copyright © 2012
by American Society of Mechanical Engineers
You do not currently have access to this content.