Rigid body displacement can be presented with Chasles’ motion by rotating about an axis and translating along the axis. This motion can be implemented by a finite displacement screw operator in the form of either a 3 × 3 dual-number matrix or a 6 × 6 matrix that is executed with rotation and translation as an adjoint action of the Lie group. This paper investigates characteristics of this finite displacement screw matrix and decomposes the secondary part that is the off diagonal part of the matrix into the part of an equivalent translation due to the effect of off-setting the rotation axis and the part of an axial translation. The paper hence presents for the first time the axial translation matrix and reveals its property, leading to discovery of new results and new formulae. The analysis further reveals two new traces of the matrix and presents the relationship between the finite displacement screw matrix and the instantaneous screw, leading to the understanding of Chasles’ motion embedded in a rigid body displacement. An algebraic and geometrical interpretation of the finite displacementscrew matrix is thus given, presenting an intrinsic property of the matrix in relation to the finite displacement screw. The paper ends with a case study to verify the theory and illustrate the principle.

References

1.
Dai
,
J. S.
, 2006, “
An Historical Review of the Theoretical Development of Rigid Body Displacements From Rodrigues Parameters to the Finite Twist
,
Mech. Mach. Theory
,
41
(
1
), pp.
41
52
.
2.
Altmann
,
S. L.
, 1986,
Rotations, Quaternions and Double Groups
,
Clarendon Press
,
Oxford, England
.
3.
Cayley
,
A.
, 1875, “
On Three-Bar Motion
,”
Proc. London Math. Soc.
,
VII
, pp.
136
166
.
4.
Bisshopp
,
K. E.
, 1969, “
Rodrigues’ Formula and the Screw Matrix
,”
Trans. ASME J. Eng. Ind.
,
91
, pp.
179
185
.
5.
Bottema
,
O.
, and
Roth
,
B.
, 1979,
Theoretical Kinematics
, North-Holland Series in Applied Mathematics and Mechanics,
North-Holland
,
Amsterdam
.
6.
Clifford
,
W. K.
, 1873, “
Preliminary Sketch of Biquaternions
,”
Proc. London Math. Soc.
,
4
(
64/65
), pp.
381
395
.
7.
Selig
,
J.
, 2010, “
Quadratic Constraints on Rigid-Body Displacements
,”
Trans. ASME J. Mech. Rob.
,
2
(
4
), p.
041009
.
8.
Dai
,
J. S.
, 2012,
Screw Algebra and Kinematics Approaches for Mechanisms and Robotics
,
Springer
,
London
.
9.
Dimentberg
,
F. M.
, 1947, “
Finite Displacements of a Three-Dimensional Four-Element Chain With Cylindrical Pairs and Cases of Passive Coupling (Konechnyye peremeshcheniya prostranstvennogo chetyrekhzvennika s tsilindricheskimi parami I sluchai passivnykh svyazey)
,”
PMM
,
11
(
6
), pp.
10
19
.
10.
Denavit
,
J.
, and
Hartenberg
,
R. S.
, 1955, “
A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices
,”
Trans. ASME J. Appl. Mech.
,
22
, pp.
215
221
.
11.
Yang
,
A. T.
, and
Freudenstein
,
F.
, 1964, “
Application of Dual-Number Quaternion Algebra to the Analysis of Spatial Mechanisms
,”
Trans ASME J. Appl. Mech.
,
86
(
2
), pp.
300
309
.
12.
Woo
,
L.
, and
Freudenstein
,
F.
, 1970, “
Application of Line Geometry to Theoretical Kinematics and the Kinematic Analysis of Mechanical Systems
,”
J. Mech.
,
5
, pp.
417
460
.
13.
Yuan
,
M. S. C.
, and
Freudenstein
,
F.
, 1971, “
Kinematics Analysis of Spatial Mechanisms by Means of Screw Coordinates, Part I—Screw Coordinates
,”
ASME J. Eng. Ind.
,
93
, pp.
61
66
.
14.
Bottema
,
O.
, and
Roth
,
B.
, 1979, “
Theoretical Kinematics
,
North-Holland Series in Applied Mathematics and Mechanics
,
North-Holland
,
Amsterdam
.
15.
Pennock
,
G. R.
, and
Yang
,
A. T.
, 1985,
Application of Dual-Number Matrices to the Inverse Kinematics Problem of Robot Manipulators
,”
Trans. ASME J. Mech., Transm., Autom. Des.
,
107
, pp.
201
208
.
16.
Ravani
,
B.
, and
Roth
,
B.
1984, “
Mappings of Spatial Kinematics
,”
Trans. ASME J. Mech. Transm. Autom. Des.
106
(
3
), pp.
341
347
.
17.
McCarthy
,
J. M.
, 1986, “
Dual Orthogonal Matrices in Manipulator Kinematics
,”
Int. J. Rob. Res.
,
5
(
2
), pp.
45
51
.
18.
McCarthy
,
J. M.
, 1990,
An Introduction to Theoretical Kinematics
,
The MIT Press
,
London
.
19.
Rooney
,
J.
, 1977, “
A Survey of Representations of Sspatial Rotation About a Fixed Point
,”
Environ. Plann. B
,
4
, pp.
185
210
.
20.
Rooney
,
J.
, 1978, “
A Comparison of Representations of General Spatial Screw Displacement
,”
Environ. Plann. B
,
5
, pp.
45
88
.
21.
Samuel
,
A. E.
,
McAree
,
P. R.
, and
Hunt
,
K. H.
, 1991, “
Unifying Screw Geometry and Matrix Transformations
,”
Int. J. Rob. Res.
,
10
(
5
), pp.
454
472
.
22.
Dai
,
J. S.
,
Holland
,
N.
, and
Kerr
,
D. R.
, 1995, “
Finite Twist Mapping and Its Application to Planar Serial Manipulators With Revolute Joints
,”
J. Mech. Eng. Sci.
,
209
(
C3
), pp.
263
272
.
23.
Parkin
,
I. A.
, 1992, “
A Third Conformation With the Screw Systems
,”
Mech. Mach. Theory
,
27
, pp.
177
188
.
24.
Hunt
,
K. H.
, and
Parkin
,
I. A.
, 1995, “
Finite Displacements of Points, Planes, and Lines via Screw Theory
,”
Mech. Mach. Theory
,
30
, pp.
177
192
.
25.
Huang
,
C.
, and
Roth
,
B.
, 1994, “
Analytic Expressions for the Finite Screw Systems
,”
Mech. Mach. Theory
,
29
, pp.
207
222
.
26.
Dai
,
J. S.
, and
Rees Jones
,
J.
, 2002, “
Null Space Construction Using Cofactors from a Screw Algebra Context
,”
Proc. R. Soc., London A
,
458
(
2024
), pp.
1845
1866
.
27.
Dai
,
J. S.
, and
Rees Jones
,
J.
, 2003, “
A Linear Algebraic Procedure in Obtaining Reciprocal Screw Systems
,”
J. Rob. Syst.
,
20
(
7
), pp.
401
412
.
28.
Huang
,
C.
,
Kuo
,
W.
, and
Ravani
,
B.
, 2010, “
On the Regulus Associated With the General Displacement of a Line and Its Application in Determining Displacement Screws
,”
Trans. ASME J. Mech. Rob.
,
2
(
4
), p.
041013
.
29.
Zarrouk
,
D.
, and
Shoham
,
M.
, 2011, “
A Note on the Screw Triangle
,”
Trans. ASME J. Mech. Rob.
,
3
(
1
), p.
014502
.
30.
Perez-Gracia
,
A.
, 2011, “
Synthesis of Spatial RPRP Closed Linkage for a Given Screw System
,”
Trans. ASME J. Mech. Rob.
,
3
(
2
), p.
021009
.
31.
Dai
,
J. S.
,
Huang
,
Z.
, and
Lipkin
,
H.
, 2006, “
Mobility of Overconstrained Parallel Mechanisms
,” Special Supplement on Spatial Mechanisms and Robot Manipulators,
Trans. ASME J. Mech. Des.
,
128
(
1
), pp.
220
229
.
32.
Yu
,
J.
,
Li
,
S.
,
Su
,
H. J.
, and
Culpepper
,
M. L.
, 2011, “
Screw Theory Based Methodology for the Deterministic Type Synthesis of Flexure Mechanisms
,”
Trans. ASME J. Mech. Rob.
,
3
(
3
), p.
031008
.
33.
Su
,
H. J.
, 2011, “
Mobility Analysis of Flexure Mechanisms via Screw Algebra
,
Trans. ASME J. Mech. Rob.
,
3
(
4
), p.
041010
.
34.
Gan
,
D. M.
,
Dai
,
J. S.
, and
Liao
,
Q. Z.
, 2010, “
Constraint Analysis on Mobility Change in the Metamorphic Parallel Mechanism
,”
Mech. Mach. Theory
,
45
, pp.
1864
1876
.
35.
Gan
,
D. M.
,
Dai
,
J. S.
, and
Galdwell
,
D. G.
, 2011, “
Constraint-Based Limb Synthesis and Mobility-Change-Aimed Mechanism Construction
,”
Trans. ASME J. Mech. Des.
,
133
(
5
), p.
051001
.
36.
Zhang
,
K.
,
Dai
,
J. S.
, and
Fang
,
Y.
, 2010, “
Topology and Constraint Analysis of Phase Change in the Metamorphic Chain and Its Evolved Mechanism
,”
Trans. ASME J. Mech. Rob.
,
132
(
12
), p.
121001
.
37.
Liu
,
H.
,
Huang
,
T.
, and
Chetwynd
,
D. G.
, 2011, “
A General Approach for Geometric Error Modeling of Lower Mobility Parallel Manipulators
,”
Trans. ASME J. Mech. Rob.
,
3
(
2
), p.
021013
.
38.
Lee
,
C.-C.
, and
Hervé
,
J. M.
, 2011, “
Isoconstrained Parallel Generators of Shoenflies Motion
,”
Trans. ASME J. Mech. Rob.
,
3
(
2
), p.
021006
.
39.
Chirikjian
,
G. S.
, and
Kyatkin
,
A. B.
, 2001,
Engineering Applications of Noncommutative Harmonk Analysis
, CRC Press.
40.
Lee
,
K.
,
Wang
,
Y.
, and
Chirikjian
,
G. S.
, 2007, “
O(n) Mass Matrix Inversion for Serial Manipulators and Polypeptide Chains Using Lie Derivatives
,”
Robotica
25
, pp.
739
750
.
41.
Müller
,
A.
, and
Terze
,
Z
, 2009, “
Lie Group Modeling and Forward Dynamics Simulation of Multibody Systems, Part 1: Topology and Kinematics
,”
Trans. FAMENA
,
33
, p.
2
.
42.
Müller
,
A.
, 2011, “
On the Manifold Property of the Set of Singularities of Kinematic Mappings: Modeling, Classification and Genericity
,”
Trans. ASME J. Mech. Rob.
,
3
(
1
), p.
011006
.
43.
Müller
,
A.
, 2012, “
On the Manifold Property of the Set of Singularities of Kinematic Mappings: Genericity Conditions
,”
Trans. ASME J. Mech. Rob.
,
4
(
1
), p.
011006
.
44.
Aspragathos
,
N. A.
, and
Dimitros
,
J. K.
, 1998, “
A Comparative Study of Three Methods for Robot Kinematics
,”
IEEE Trans Syst Man Cybern., Part B: Cybern.
28
(
2
), pp.
135
145
.
45.
Suleyman
,
D.
, 2007, “
Matrix Realization of Dual Quaternionic Electromagnetism
,”
Cent. Eur. J. Phys.
,
5
(
4
), pp.
487
506
.
46.
Hervé
,
J. M.
, 1978, “
Analyze structurelle des mécanismes par groupe des déplacements (in French)
,”
Mech. Mach. Theory
,
13
, pp.
437
450
.
47.
Chen
,
C.
, 2010, “
Mobility Analysis of Parallel Manipulators and Pattern of Transform Matrix
,”
Trans. ASME J. Mech. Rob.
,
2
(
4
), p.
041003
.
48.
McMahon
,
C.
, and
Browne
,
J.
, 1998,
CADCAM: Principles, Practice and Manufacturing Management
,
Addison-Wesley
,
New York
.
49.
Ayres
,
F.
, 1974,
Theory and Problems of Matrices
, Schaum’s Outline Series,
McGraw Hill
,
NY
.
You do not currently have access to this content.