Tristable mechanisms, or devices with three distinct stable equilibrium positions, have promise for future applications, but the complexities of the tristable behavior have made it difficult to identify configurations that can achieve tristable behavior while meeting practical stress and fabrication constraints. This paper describes a new tristable configuration that employs orthogonally oriented compliant mechanisms that result in tristable mechanics that are readily visualized. The functional principles are described and design models are derived. Feasibility is conclusively demonstrated by the successful operation of four embodiments covering a range of size regimes, materials, and fabrication processes. Tested devices include an in-plane tristable macroscale mechanism, a tristable lamina emergent mechanism, a tristable micromechanism made using a carbon nanotube-based fabrication process, and a polycrystalline silicon micromechanism.

1.
Howell
,
L.
, 2001,
Compliant Mechanisms
,
Wiley
,
New York
.
2.
Hälg
,
B.
, 1990, “
On a Micro-Electro-Mechanical Nonvolatile Memory Cell
,”
IEEE Trans. Electron Devices
0018-9383,
37
(
10
), pp.
2230
2236
.
3.
Hwang
,
I. -H.
,
Shim
,
Y. -S.
, and
Lee
,
J. -H.
, 2003, “
Modeling and Experimental Characterization of the Chevron-Type Bi-Stable Microactuator
,”
J. Micromech. Microeng.
0960-1317,
13
(
6
), pp.
948
954
.
4.
Qiu
,
J.
,
Lang
,
J.
, and
Slocum
,
A.
, 2004, “
A Curved-Beam Bistable Mechanism
,”
J. Microelectromech. Syst.
1057-7157,
13
(
2
), pp.
137
146
.
5.
Charlot
,
B.
,
Sun
,
W.
,
Yamashita
,
K.
,
Fujita
,
H.
, and
Toshiyoshi
,
H.
, 2008, “
Bistable Nanowire for Micromechanical Memory
,”
J. Micromech. Microeng.
0960-1317,
18
(
4
), p.
045005
.
6.
Kwon
,
H. -N.
,
Hwang
,
I. -H.
, and
Lee
,
J. -H.
, 2005, “
A Pulse-Operating Electrostatic Microactuator for Bi-Stable Latching
,”
J. Micromech. Microeng.
0960-1317,
15
(
8
), pp.
1511
1516
.
7.
Masters
,
N.
, and
Howell
,
L.
, 2003, “
A Self-Retracting Fully Compliant Bistable Micromechanism
,”
J. Microelectromech. Syst.
1057-7157,
12
(
3
), pp.
273
280
.
8.
Wilcox
,
D.
, and
Howell
,
L.
, 2005, “
Double-Tensural Bistable Mechanisms (DTBM) With On-Chip Actuation and Spring-Like Post-Bistable Behavior
,” ASME Paper No. DETC2005-84697.
9.
Wilcox
,
D. L.
, and
Howell
,
L. L.
, 2005, “
Fully Compliant Tensural Bistable Micromechanisms (FTBM)
,”
J. Microelectromech. Syst.
1057-7157,
14
, pp.
1223
1235
.
10.
Sönmez
,
U.
, and
Tutum
,
C.
, 2008, “
A Compliant Bistable Mechanism Design Incorporating Elastica Buckling Beam Theory and Pseudo-Rigid-Body Model
,”
ASME J. Mech. Des.
0161-8458,
130
(
4
), p.
042304
.
11.
Jensen
,
B.
, and
Howell
,
L.
, 2003, “
Identification of Compliant Pseudo-Rigid-Body Four-Link Mechanism Configurations Resulting in Bistable Behavior
,”
ASME J. Mech. Des.
0161-8458,
125
(
4
), pp.
701
708
.
12.
Jensen
,
B.
, and
Howell
,
L.
, 2004, “
Bistable Configurations of Compliant Mechanisms Modeled Using Four Links and Translational Joints
,”
ASME J. Mech. Des.
0161-8458,
126
(
4
), pp.
657
666
.
13.
Pendleton
,
T.
, and
Jensen
,
B.
, 2007, “
Development of a Tristable Compliant Mechanism
,”
Proceedings of the 12th IFToMM World Congress
, Paper No. A835.
14.
Pendleton
,
T.
, and
Jensen
,
B.
, 2008, “
Compliant Wireform Mechanisms
,”
ASME J. Mech. Des.
0161-8458,
130
(
12
), p.
122302
.
15.
Chen
,
G.
,
Wilcox
,
D.
, and
Howell
,
L.
, 2009, “
Fully Compliant Double Tensural Tristable Micromechanisms (DTTM)
,”
J. Micromech. Microeng.
0960-1317,
19
(
2
), p.
025011
.
16.
Oberhammer
,
J.
,
Tang
,
M.
,
Liu
,
A.
, and
Stemme
,
G.
, 2006, “
Mechanically Tri-Stable, True Single-Pole-Double-Throw (SPDT) Switches
,”
J. Micromech. Microeng.
0960-1317,
16
(
11
), pp.
2251
2258
.
17.
Han
,
J.
,
Muller
,
C.
,
Wallrabe
,
U.
, and
Korvink
,
J.
, 2007, “
Design, Simulation, and Fabrication of a Quadstable Monolithic Mechanism With X- and Y-Directional Bistable Curved Beams
,”
ASME J. Mech. Des.
0161-8458,
129
(
11
), pp.
1198
1203
.
18.
Oh
,
Y.
, and
Kota
,
S.
, 2009, “
Synthesis of Multi-Stable Equilibrium Compliant Mechanisms Using Combinations of Bistable Mechanisms
,”
ASME J. Mech. Des.
0161-8458,
131
, p.
021002
.
19.
Gerson
,
Y.
,
Krylov
,
S.
,
Ilic
,
B.
, and
Schreiber
,
D.
, 2008, “
Large Displacement Low Voltage Multistable Micro Actuator
,”
Proceedings of the IEEE 21st International Conference on Micro Electro Mechanical Systems
, pp.
463
466
.
20.
Ohsaki
,
M.
, and
Nishiwaki
,
S.
, 2005, “
Shape Design of Pin-Jointed Multistable Compliant Mechanisms Using Snapthrough Behavior
,”
Struct. Multidiscip. Optim.
1615-147X,
30
(
4
), pp.
327
334
.
21.
King
,
C.
,
Beaman
,
J.
,
Sreenivasan
,
S.
, and
Campbell
,
M.
, 2004, “
Multistable Equilibrium System Design Methodology and Demonstration
,”
ASME J. Mech. Des.
0161-8458,
126
(
6
), pp.
1036
1046
.
22.
King
,
C.
,
Campbell
,
M.
,
Beaman
,
J.
, and
Sreenivasan
,
S.
, 2005, “
Synthesis of Multistable Equilibrium Linkage Systems Using an Optimization Approach
,”
Struct. Multidiscip. Optim.
1615-147X,
29
(
6
), pp.
477
487
.
23.
Jacobsen
,
J.
,
Winder
,
B.
,
Howell
,
L.
, and
Magleby
,
S.
, 2010, “
Lamina Emergent Mechanisms and Their Basic Elements
,”
ASME J. Mech. Rob.
1942-4302,
2
, p.
011003
.
24.
Cherry
,
B.
,
Howell
,
L.
, and
Jensen
,
B.
, 2008, “
Evaluating Three-Dimensional Effects on the Behavior of Compliant Bistable Micromechanisms
,”
J. Micromech. Microeng.
0960-1317,
18
(
9
), p.
095001
.
25.
Hutchison
,
D.
,
Aten
,
Q.
,
Turner
,
B.
,
Morrill
,
N.
,
Howell
,
L.
,
Jensen
,
B.
,
Davis
,
R.
, and
Vanfleet
,
R.
, 2009, “
High Aspect Ratio Microelectromechanical Systems: A Versatile Approach Using Carbon Nanotubes as a Framework
,”
Proceedings of the Transducers 2009
.
26.
Hayamizu
,
Y.
,
Yamada
,
T.
,
Mizuno
,
K.
,
Davis
,
R.
,
Futaba
,
D.
,
Yumura
,
M.
, and
Hata
,
K.
, 2008, “
Integrated Three-Dimensional Microelectromechanical Devices From Processable Carbon Nanotube Wafers
,”
Nat. Nanotechnol.
1748-3387,
3
(
5
), pp.
289
294
.
27.
DiBiasio
,
C.
,
Culpepper
,
M.
,
Panas
,
R.
,
Howell
,
L.
, and
Magleby
,
S.
, 2008, “
Comparison of Molecular Simulation and Pseudo-Rigid-Body Model Predictions for a Carbon Nanotube-Based Compliant Parallel-Guiding Mechanism
,”
ASME J. Mech. Des.
0161-8458,
130
(
4
), p.
042308
.
You do not currently have access to this content.