Abstract

Tensegrity parallel mechanisms is a novel spatial structure composed of cable-based and rigid-based chains, which is characterized by lightweight, multi-stability, high precision, good stiffness, and high load-bearing capacity. This paper focuses on the six-degree-of-freedom tensegrity parallel mechanism, analyzing its static equilibrium and presenting the force equilibrium equations. A model for cable tension distribution optimization is established, utilizing different P-norm objective functions to optimize the distribution of tension in cables and rigid links, discussing the reasons for unreasonable tensions in the system. Under given constraints on the motion pairs of the mechanism, the workspace of the mechanism is plotted, and factors influencing the size of the workspace are analyzed. Finally, the singularity of the mechanism is addressed based on the Jacobian matrix, demonstrating the feasibility of reaching the space volume by the mechanism. It has certain reference significance for the configuration theory and analysis methods of tensegrity parallel mechanisms and rigid-flexible coupling mechanisms, and provides a reference for the further promotion and application of mechanisms.

References

1.
Paty
,
T.
,
Binaud
,
N.
,
Wang
,
H.
, and
Segonds
,
S.
,
2023
, “
Sensitivity Analysis of a Suspended Cable-Driven Parallel Robot to Design Parameters
,”
ASME J. Mech. Rob.
,
15
(
6
), p.
061001
.
2.
Wang
,
Y.
,
Xu
,
X.
, and
Luo
,
Y.
,
2020
, “
Topology Design of General Tensegrity With Rigid Bodies
,”
Int. J. Solids Struct.
,
202
, pp.
278
298
.
3.
Ma
,
S.
,
Chen
,
M.
,
Peng
,
Z.
,
Yuan
,
X.
, and
Skelton
,
R. E.
,
2022
, “
The Equilibrium and Form-Finding of General Tensegrity Systems With Rigid Bodies
,”
Eng. Struct.
,
266
, p.
114618
.
4.
Paul
,
C.
,
Valero-Cuevas
,
F. J.
, and
Lipson
,
H.
,
2006
, “
Design and Control of Tensegrity Robots for Locomotion
,”
IEEE Trans. Rob.
,
22
(
5
), pp.
944
957
.
5.
Koizumi
,
Y.
,
Shibata
,
M.
, and
Hirai
,
S.
,
2012
, “
Rolling Tensegrity Driven by Pneumatic Soft Actuators
,”
2012 IEEE International Conference on Robotics and Automation
,
Saint Paul, MN
,
May 14–18
,
IEEE
, pp.
1988
1993
.
6.
Sun
,
J.
,
Cao
,
X.
, and
Song
,
G.
,
2020
, “
Design Method for a Bionic Wrist Based on Tensegrity Structures
,”
Biosurf. Biotribol.
,
6
(
2
), pp.
31
36
.
7.
Moored
,
K. W.
,
Kemp
,
T. H.
,
Houle
,
N. E.
, and
Bart-Smith
,
H.
,
2011
, “
Analytical Predictions, Optimization, and Design of a Tensegrity-Based Artificial Pectoral Fin
,”
Int. J. Solids Struct.
,
48
(
22–23
), pp.
3142
3159
.
8.
Fazli
,
N.
, and
Abedian
,
A.
,
2011
, “
Design of Tensegrity Structures for Supporting Deployable Mesh Antennas
,”
Sci. Iran.
,
18
(
5
), pp.
1078
1087
.
9.
Yang
,
S.
, and
Sultan
,
C.
,
2019
, “
Deployment of Foldable Tensegrity-Membrane Systems Via Transition Between Tensegrity Configurations and Tensegrity-Membrane Configurations
,”
Int. J. Solids Struct.
,
160
, pp.
103
119
.
10.
Sultan
,
C.
, and
Skelton
,
R.
,
2004
, “
A Force and Torque Tensegrity Sensor
,”
Sens. Actuators A
,
112
(
2–3
), pp.
220
231
.
11.
Burt
,
S.
,
2013
,
Kinematics Algorithms for Tensegrity Structures
,
University of California
,
Santa Cruz, CA
.
12.
Park
,
I. W.
, and
SunSpiral
,
V.
,
2014
, “
Impedance Controlled Twisted String Actuators for Tensegrity Robots
,”
2014 14th International Conference on Control, Automation and Systems (ICCAS 2014)
,
Gyeonggi-do, South Korea
,
Dec. 18
,
IEEE
, pp.
1331
1338
.
13.
Abadi
,
B. N. R.
,
Farid
,
M.
, and
Mahzoon
,
M.
,
2014
, “
Introducing and Analyzing a Novel Three-Degree-of-Freedom Spatial Tensegrity Mechanism
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(
2
), p.
021017
.
14.
Zhu
,
W.
,
Liu
,
J.
,
Shi
,
K.
,
Qi
,
F.
,
Shen
,
H.
,
Xu
,
Z.
, and
Ma
,
Z.
,
2022
, “
Optimization Design and Dynamic Stability Analysis of 3-DOF Cable-Driven Parallel Robot With an Elastic Telescopic Rod
,”
J. Mech. Sci. Technol.
,
36
(
9
), pp.
4735
4746
.
15.
Gosselin
,
C.
, and
Grenier
,
M.
,
2011
, “
On the Determination of the Force Distribution in Overconstrained Cable-Driven Parallel Mechanisms
,”
Meccanica
,
46
(
1
), pp.
3
15
.
16.
Lamaury
,
J.
, and
Gouttefarde
,
M.
,
2012
, “A Tension Distribution Method With Improved Computational Efficiency,”
Cable-Driven Parallel Robots
,
M.
Ceccarelli
,
B.
Corves
,
V.
Glazunov
,
A.
Hernández
,
T.
Huang
,
J. C.
Jauregui Correa
,
Y.
Takeda
, and
S. K.
Agrawal
, eds.,
Springer
,
Berlin
, pp.
71
85
.
17.
Lim
,
W. B.
,
Yeo
,
S. H.
, and
Yang
,
G.
,
2013
, “
Optimization of Tension Distribution for Cable-Driven Manipulators Using Tension-Level Index
,”
IEEE/ASME Trans. Mechatron.
,
19
(
2
), pp.
676
683
.
18.
Li
,
H.
,
Zhang
,
X.
,
Yao
,
R.
,
Sun
,
J.
,
Pan
,
G.
, and
Zhu
,
W.
,
2013
, “Optimal Force Distribution Based on Slack Rope Model in the Incompletely Constrained Cable-Driven Parallel Mechanism of FAST Telescope,”
Cable-Driven Parallel Robots
,
M.
Ceccarelli
,
B.
Corves
,
V.
Glazunov
,
A.
Hernández
,
T.
Huang
,
J. C.
Jauregui Correa
,
Y.
Takeda
, and
S. K.
Agrawal
, eds.,
Springer Nature
,
Switzerland
, pp.
87
102
.
19.
Wu
,
G.
,
2018
, “
Workspace, Transmissibility and Dynamics of a New 3T3R Parallel Pick-and-Place Robot With High Rotational Capability
,”
2018 IEEE International Conference on Robotics and Automation (ICRA)
,
Brisbane, QLD, Australia
,
Sept. 13
,
IEEE
, pp.
942
947
.
20.
Arsenault
,
M.
,
2013
, “
Workspace and Stiffness Analysis of a Three-Degree-of-Freedom Spatial Cable-Suspended Parallel Mechanism While Considering Cable Mass
,”
Mech. Mach. Theory
,
66
, pp.
1
13
.
21.
Chen
,
B.
, and
Jiang
,
H.
,
2022
, “
Instability Results From Purely Rotational Stiffness for General Tensegrity Structure With Rigid Bodies
,”
Mech. Mach. Theory
,
167
, p.
104485
.
22.
Wang
,
Y.
,
Xu
,
X.
, and
Luo
,
Y.
,
2023
, “
Stability Conditions for General Tensegrity With Rigid Bodies
,”
J. Eng. Mech.
,
149
(
8
), p.
04023045
.
23.
Wang
,
Y.
,
Xu
,
X.
, and
Luo
,
Y.
,
2023
, “
Self-equilibrium, Mechanism Stiffness, and Self-stress Design of General Tensegrity With Rigid Bodies or Supports: A Unified Analysis Approach
,”
ASME J. Appl. Mech.
,
90
(
8
), p.
081004
.
24.
Domer
,
B.
,
Fest
,
E.
,
Lalit
,
V.
, and
Smith
,
I. F.
,
2003
, “
Combining Dynamic Relaxation Method With Artificial Neural Networks to Enhance Simulation of Tensegrity Structures
,”
J. Struct. Eng.
,
129
(
5
), pp.
672
681
.
25.
Lu
,
C.
,
Zhu
,
H.
, and
Li
,
S.
,
2017
, “
Initial Form-Finding Design of Deployable Tensegrity Structures With Dynamic Relaxation Method
,”
J. Intell. Fuzzy Syst.
,
33
(
5
), pp.
2861
2868
.
26.
Lee
,
S.
, and
Lee
,
J.
,
2014
, “
Form-Finding of Tensegrity Structures With Arbitrary Strut and Cable Members
,”
Int. J. Mech. Sci.
,
85
, pp.
55
62
.
27.
Cho
,
Y.
,
Hong
,
T.
,
Cheong
,
J.
,
Yi
,
B. J.
,
Kim
,
W.
, and
Jeong
,
H.
,
2020
, “
Development of a New 3T1R Type Cable-Driven Haptic Device
,”
J. Mech. Sci. Technol.
,
34
(
11
), pp.
4721
4734
.
28.
Roberts
,
R. G.
,
Graham
,
T.
, and
Lippitt
,
T.
,
1998
, “
On the Inverse Kinematics, Statics, and Fault Tolerance of Cable-Suspended Robots
,”
J. Robot. Syst.
,
15
(
10
), pp.
581
597
.
29.
Ebert-Uphoff
,
I.
, and
Voglewede
,
P. A.
,
2004
, “
On the Connections Between Cable-Driven Robots, Parallel Manipulators and Grasping
,”
Proceedings of the IEEE International Conference on Robotics and Automation, 2004 (ICRA’04)
,
New Orleans, LA
,
June 7
, Vol. 5,
IEEE
, pp.
4521
4526
.
30.
Bosscher
,
P.
,
Riechel
,
A. T.
, and
Ebert-Uphoff
,
I.
,
2006
, “
Wrench-Feasible Workspace Generation for Cable-Driven Robots
,”
IEEE Trans. Rob.
,
22
(
5
), pp.
890
902
.
31.
Meng
,
Q.
,
Xie
,
F.
, and
Liu
,
X. J.
,
2018
, “
Conceptual Design and Kinematic Analysis of a Novel Parallel Robot for High-Speed Pick-and-Place Operations
,”
Front. Mech. Eng.
,
13
(
2
), pp.
211
224
.
You do not currently have access to this content.