Abstract

Aiming at the inherent defects of single-drive mode parallel mechanisms, such as small good workspace and many singular configurations, a new multi-drive mode parallel mechanism is proposed from the perspective of driving innovation. Taking the planar 6R parallel mechanism as an example, the driving layout configuration strategy and scale optimization design are studied. First, the potential driving layout of the mechanism is analyzed, and the inverse kinematics model of the mechanism is established. Then, based on the motion/force transmission index, the singular space and good transmission workspace of the mechanism are identified, and the mechanism-driven layout configuration strategy is formulated to complete the performance comparison analysis. Finally, based on the performance map method, the scale optimization design of the mechanism is carried out, the prototype is developed and manufactured, and the experimental verification is carried out. The research results show that the multi-drive mode parallel mechanism can improve its kinematic performance without changing the topological structure and scale parameters of the mechanism.

References

1.
Jiang
,
D. X.
,
Zheng
,
T. J.
,
Yang
,
G. L.
,
Tan
,
Y. Z.
,
Fang
,
Z. J.
,
Li
,
H. M.
,
Zhang
,
C.
, and
Ye
,
H. W.
,
2022
, “
Design and Analysis of a Stiffness-Enhanced 3-PPS Parallel Mechanism for Fault-Tolerant Underwater Vectored Thrusters
,”
Machines
,
10
(
2
), pp.
88
88
.
2.
Jiang
,
B. S.
,
Fang
,
H. R.
, and
Zhang
,
H. Q.
,
2021
, “
Type Synthesis and Dynamics Performance Evaluation of a Class of 5-DOF Redundantly Actuated Parallel Mechanisms
,”
Int. J. Autom. Comput.
,
18
(
1
), pp.
96
109
.
3.
Ren
,
H. H.
,
Zhang
,
L. Z.
, and
Su
,
C. Z.
,
2021
, “
Design and Research of a Walking Robot With Two Parallel Mechanisms
,”
Robotica
,
39
(
9
), pp.
1634
1641
.
4.
Li
,
S. H.
,
Shan
,
Y. X.
,
Yu
,
J. J.
, and
Ke
,
Y. X.
,
2021
, “
Actuation Spaces Synthesis of Lower-Mobility Parallel Mechanisms Based on Screw Theory
,”
Chin. J. Mech. Eng.
,
34
(
1
), pp.
1
12
.
5.
Liu
,
W.
, and
Liu
,
H. Z.
,
2022
, “
Synthesis of Asymmetric Parallel Mechanism With Multiple 3-DOF Motion Modes
,”
Adv. Mech. Eng.
,
14
(
2
), pp.
1
18
.
6.
Cao
,
Y. C.
,
Zhang
,
T.
,
Zhao
,
Y. Z.
, and
Ma
,
G. C.
,
2020
, “
Performance Analysis of 3-PPRU Parallel Mechanism With a Completely/Partially/non Constant Jacobian Matrix
,”
J. Mech. Sci. Technol.
,
34
(
10
), pp.
4263
4279
.
7.
Liang
,
D.
,
Song
,
Y. M.
,
Sun
,
T.
, and
Dong
,
G.
,
2016
, “
Optimum Design of a Novel Redundantly Actuated Parallel Manipulator With Multiple Actuation Modes for High Kinematic and Dynamic Performance
,”
Nonlinear Dyn.
,
83
(
1–2
), pp.
631
658
.
8.
Wang
,
L. P.
,
Zhang
,
Z. K.
, and
Shao
,
Z. F.
,
2019
, “
Kinematic Performance Analysis and Promotion of a Spatial 3-RPaS Parallel Manipulator With Multiple Actuation Modes
,”
J. Mech. Sci. Technol.
,
33
(
2
), pp.
889
902
.
9.
Zhang
,
Z. K.
,
Wang
,
L. P.
, and
Shao
,
Z. F.
,
2018
, “
Improving the Kinematic Performance of a Planar 3-RRR Parallel Manipulator Through Actuation Mode Conversion
,”
Mech. Mach. Theory
,
130
, pp.
86
108
.
10.
Fang
,
H. R.
,
Liu
,
P. F.
,
Yang
,
H.
, and
Jiang
,
B. S.
,
2021
, “
Design and Analysis of a Novel 2T2R Parallel Mechanism With the Closed-Loop Limbs
,”
Int. J. Autom. Comput.
,
18
(
4
), pp.
654
666
.
11.
Lv
,
Y.
,
Xu
,
Y.
, and
Chen
,
J.
,
2019
, “
Optimal Design of Kinematic Performance for a Novel 2R1T Parallel Mechanism With Pantograph Units
,”
J. Braz. Soc. Mech. Sci. Eng.
,
41
(
7
), pp.
1
14
.
12.
Yang
,
H.
,
Fang
,
H. R.
,
Fang
,
Y. F.
, and
Li
,
X. Y.
,
2021
, “
Dimensional Synthesis of a Novel 5-DOF Reconfigurable Hybrid Perfusion Manipulator for Large-Scale Spherical Honeycomb Perfusion
,”
Front. Mech. Eng.
,
16
(
1
), pp.
46
60
.
13.
Vasilic
,
G.
,
Zivanovic
,
S.
,
Kokotovic
,
B.
, and
Dimic
,
Z.
,
2019
, “
Configuring and Analysis of a Class of Generalized Reconfigurable 2-Axis Parallel Kinematic Machine
,”
J. Mech. Sci. Technol.
,
33
(
7
), pp.
3407
3421
.
14.
Xiong
,
H.
, and
Diao
,
X. M.
,
2020
, “
Stiffness Analysis of Cable-Driven Parallel Mechanisms With Cables Having Large Sustainable Strains
,”
Proc. Inst. Mech. Eng C
,
234
(
10
), pp.
1959
1968
.
15.
Khoshnoodi
,
H.
,
Rahmani Hanzaki
,
A.
, and
Talebi
,
H. A.
,
2018
, “
Kinematics Singularity Study and Optimization of an Innovative Spherical Parallel Manipulator With Large Workspace
,”
J. Intell. Robot. Syst.
,
92
(
2
), pp.
309
321
.
16.
Zhu
,
C. X.
,
Liu
,
X. H.
, and
Liu
,
W.
,
2021
, “
Research on Structural Optimization of 3-TPT Parallel Mechanism Based on Stiffness Characteristics
,”
Mech. Based Des. Struct Mach.
,
49
(
2
), pp.
256
270
.
17.
Wang
,
L. P.
,
Zhang
,
Z. K.
,
Shao
,
Z. F.
, and
Tang
,
X. Q.
,
2019
, “
Analysis and Optimization of a Novel Planar 5R Parallel Mechanism With Variable Actuation Modes
,”
Robot. Comput. Integr. Manuf.
,
56
, pp.
178
190
.
18.
Russo
,
M.
,
2023
, “
Measuring Performance: Metrics for Manipulator Design Control and Optimization
,”
Robotics
,
12
(
1
), p.
4
.
19.
Rarus
,
C.
,
1900
, “
A Treatise on the Theory of Screws
,”
Science
,
12
(
13
), pp.
1001
1003
.
20.
Yuan
,
M. S. C.
,
Freudenstein
,
F.
, and
Woo
,
L. S.
,
1971
, “
Kinematic Analysis of Spatial Mechanisms by Means of Screw Coordinates. Part 2-Analysis of Spatial Mechanisms
,”
ASME J. Eng. Ind.
,
93
(
1
), pp.
67
73
.
21.
Tsai
,
M. J.
, and
Lee
,
H. W.
,
1994
, “
Generalized Evaluation for the Transmission Performance of Mechanisms
,”
Mech. Mach. Theory
,
29
(
4
), pp.
607
618
.
22.
Chen
,
C.
, and
Angeles
,
J.
,
2007
, “
Generalized Transmission Index and Transmission Quality for Spatial Linkages
,”
Mech. Mach. Theory
,
42
(
9
), pp.
1225
1237
.
23.
Wang
,
J. S.
,
Wu
,
C.
, and
Liu
,
X. J.
,
2010
, “
Performance Evaluation of Parallel Manipulators: Motion/Force Transmissibility and Its Index
,”
Mech. Mach. Theory
,
45
(
10
), pp.
1462
1476
.
24.
Shao
,
Z. F.
,
Tang
,
X. Q.
,
Wang
,
L. P.
, and
Sun
,
D. F.
,
2015
, “
Atlas Based Kinematic Optimum Design of the Stewart Parallel Manipulator
,”
Chin. J. Mech. Eng.
,
28
(
1
), pp.
20
28
.
25.
Zhang
,
N. B.
,
Huang
,
P. C.
, and
Li
,
Q. C.
,
2018
, “
Modeling Design and Experiment of a Remote-Center-of-Motion Parallel Manipulator for Needle Insertion
,”
Robot. Comput. Integr. Manuf.
,
50
(
C
), pp.
193
202
.
26.
Wu
,
J.
,
Wang
,
J. S.
,
Wang
,
L. P.
, and
You
,
Z.
,
2010
, “
Performance Comparison of Three Planar 3-DOF Parallel Manipulators With 4-RRR 3-RRR and 2-RRR Structures
,”
Mechatronics
,
20
(
4
), pp.
510
517
.
27.
Xie
,
F. G.
,
Liu
,
X. J.
, and
Wang
,
J. S.
,
2012
, “
A 3-DOF Parallel Manufacturing Module and Its Kinematic Optimization
,”
Robot. Comput. Integr. Manuf.
,
28
(
3
), pp.
334
343
.
28.
Zhu
,
B.
,
Wang
,
L.
, and
Wu
,
J.
,
2022
, “
Optimal Design of Loading Device Based on a Redundantly Actuated Parallel Manipulator
,”
Mech. Mach. Theory
,
178
, p.
105084
.
29.
Han
,
M.
,
Yang
,
D.
,
Shi
,
B
,
Li
,
T.
, and
Feng
,
J.
,
2020
, “
Mobility Analysis of a Typical Multi-Loop Coupled Mechanism Based on Screw Theory and Its Drive Layout Optimization
,”
Adv. Mech. Eng.
,
12
(
12
), pp.
1
9
.
30.
Yuan
,
X.
,
Meng
,
Q. Z.
,
Xie
,
F. G.
,
Liu
,
X. J.
, and
Wang
,
J. S.
,
2022
, “
Position Error Modeling and Accuracy Evaluation of n-DoF Translational Parallel Manipulators That can be Transformed Into n Four-Bar Mechanisms Based on Motion/Force Transmissibility
,”
Mech. Mach. Theory
,
176
, p.
105012
.
31.
Yuan
,
X.
,
Meng
,
Q. Z.
,
Xie
,
F. G.
,
Liu
,
X. J.
, and
Wang
,
J. S.
,
2023
, “
Error Modeling and Accuracy Evaluation of Parallel Manipulators With Mixed DoFs Based on Motion/Force Transmissibility and Constrainability
,”
Mech. Mach. Theory
,
186
, p.
105346
.
You do not currently have access to this content.