Abstract

This paper studies a structural–parametric synthesis of the four-bar and Stephenson II, Stephenson III A, and Stephenson III B six-bar function generators. A four-bar function generator is formed by connecting two coordinate systems with given angles of rotation using a negative closing kinematic chain (CKC) of the RR type. Six-bar function generators are formed by connecting two coordinate systems using two CKCs: a passive CKC of the RRR type and a negative CKC of the RR type. The negative CKC of the RR type imposes one geometrical constraint to the relative motion of the links, and its geometric parameters are defined by least-squares approximation. Passive CKC of the RRR type does not impose a geometrical constraint, and the geometric parameters of its links are varied to satisfy the geometrical constraint of the negative CKC. Numerical results of the four-bar and six-bar function generators parametric synthesis are presented.

References

1.
Svoboda
,
A.
,
1994
, “Mechanism for Use in Computing Apparatus,” U.S. Patent No. 2,340,350.
2.
Svoboda
,
A.
,
1948
,
Computing Mechanisms and Linkages
,
McGraw-Hill
,
New York
.
3.
McCarthy
,
M. J.
,
2011
, “
Kinematics, Polynomials, and Computers—A Brief History
,”
ASME J. Mech. Rob.
,
3
(1), p.
010201
.
4.
Burmester
,
L.
,
1888
,
Lehrbuch der Kinematik
,
Artur Felix Verlag
,
Leipzig, Germany
.
5.
Hunt
,
K. H.
,
1978
,
Kinematic Geometry of Mechanisms
,
Oxford University Press
,
New York
.
6.
Bottema
,
O.
, and
Roth
,
B.
,
1979
,
Theoretical Kinematics
,
North Holland Publishing Company
,
Amsterdam, New York, Oxford
.
7.
Angeles
,
J.
, and
Bai
,
S.
,
2016
,
Kinematic Synthesis, Lecture Notes
,
McGill University
,
Montreal, PQ, Canada
.
8.
Angeles
,
J.
, and
Bai
,
S.
,
2005
, “
Some Special Cases of the Burmester Problem for Four and Five Poses
,”
Proceedings of IDETC/CIE 2005
,
Long Beach, CA
,
Sept. 24−26
, pp. 307–314, PAper No. DETC 2005-84871.
9.
Piza
,
B.
, and
Cunaku
,
I.
,
2017
, “
Synthesis of Watt and Stephenson Six Bar Mechanisms Using Burmester Theory
,”
Int. J. Curr. Technol. Eng.
,
7
(
1
), p.
5.
10.
McCarthy
,
J. M.
, and
Soh
,
G. S.
,
2010
,
Geometric Design of Linkages
, 2nd ed.,
Springer-Verlag
,
Berlin
.
11.
Chebyshev
,
P. L.
,
1897
, “
Sur Les Parallelogrammes Composes de Trois Elements Quelcongues
,”
Memoires de l’Academic des Sciences de Saint-Petersbourg
,
36
(
Suppl. 3
)
.
12.
Freudenstein
,
F.
,
1954
, “
An Analytical Approach to the Design of Four-Link Mechanisms
,”
Trans. ASME
,
76
, pp.
483
492
.
13.
Hartenberg
,
R. S.
, and
Denavit
,
J.
,
1964
,
Kinematic Synthesis of Linkages
,
McGraw-Hill
,
New York, NY
.
14.
McLarnan
,
C. W.
,
1963
, “
Synthesis of Six-Link Mechanisms by Numerical Analysis
,”
ASME J. Eng. Ind.
,
85
(
1
), pp.
5
10
.
15.
Subbian
,
T.
, and
Flugrad
,
D. R.
,
1993
, “
Five Position Triad Synthesis With Applications to Four- and Six-Bar Mechanisms
,”
ASME J. Mech. Des.
,
115
(
2
), pp.
262
268
.
16.
Subbian
,
T.
, and
Flugrad
,
D. R.
, Jr.
,
1994
, “
Six and Seven Position Triad Synthesis Using Continuation Methods
,”
ASME J. Mech. Des.
,
116
(
2
), pp.
660
665
.
17.
Kiper
,
G.
,
Dede
,
M. İ. C.
,
Maaroof
,
O. W.
, and
Özkahya
,
M.
,
2017
, “
Function Generation With Two-Loop Mechanisms Using Decomposition and Correction Method
,”
Mech. Mach. Theory
,
110
, pp.
16
26
.
18.
Huang
,
W. M.
, and
Chen
,
Y. J.
, 2010, “
Defect-Free Synthesis of Stephenson II Function Generators
,”
ASME J. Mech. Rob.
,
2
(
4
), p.
041012
.
19.
Bulatovic’
,
R. R.
,
Dozdevic’
,
S. R.
, and
Dordevic
,
V. S.
,
2013
, “
Cuckoo Search Algorithm: A Metaheuristic Approach to Solving the Problem of Optimum Synthesis of a Six-Bar Double Dwell Linkage
,”
Mech. Mach. Theory
,
61
, pp.
1
13
.
20.
Plecnik
,
M.
, and
McCarthy
,
J. M.
,
2014
, “
Numerical Synthesis of Six-Bar Linkages for Mechanical Computation
,”
ASME J. Mech. Rob.
,
6
(
2
), p.
0310012
.
21.
Plecnik
,
M. M.
, and
McCarthy
,
J. M.
,
2016
, “
Kinematic Synthesis of Stephenson III Six-Bar Function Generators
,”
Mech. Mach. Theory
,
97
, pp.
112
126
.
22.
Plecnik
,
M.
, and
McCarthy
,
J. M.
,
2013
, “
Synthesis a Stephenson II Function Generator for Eight Precision Positions
,”
Proceedings of the IDETC/CIE 2013
,
Portland, OR
,
Aug. 4–7
, p.
10
.
23.
Bates
,
D. J.
,
Hauenstein
,
J. D.
,
Sommese
,
A. J.
, and
Wampler
,
C. W.
,
2013
,
Numerically Solving Polynomial Systems With Bertini
,
SIAM Press
,
Philadelphia, PA
.
24.
Sarkissyan
,
Y. L.
,
Gupta
,
K. C.
, and
Roth
,
B.
,
1973
, “
Kinematic Geometry Associated With the Least Square Approximation of a Given Motion
,”
J. Eng. Ind.
,
95
(
2
), pp.
503
510
.
25.
Sarkissyan
,
Y. L.
,
1982
,
Approximation Synthesis of Mechanisms (in Russian)
,
Nauka
,
Moscow
.
26.
Sarkissyan
,
Y. L.
,
Stepanyan
,
K. G.
, and
Verlinski
,
S. V.
,
2015
, “
Rigid Body Points Approximating Concentric Circles in Given Sets of Its Planar Displacements
,”
Proceedings of the 14th IFToMM World Congress
,
Taipei, Taiwan
,
Oct. 25–30
, Vol. 1, pp.
57
61
.
27.
Baigunchekov
,
Z.
,
Laribi
,
M. A.
,
Carbone
,
G.
,
Mustafa
,
A.
,
Amanov
,
B.
, and
Zholdassov
,
Y.
,
2021
, “
Structural-Parametric Synthesis of the RoboMech Class Parallel Mechanism With Two Sliders
,”
Appl. Sci.
,
11
(
21
), pp.
9831; 18
.
28.
Baigunchekov
,
Z.
,
Laribi
,
M. A.
,
Mustafa
,
A.
, and
Kassinov
,
A.
,
2021
, “
Kinematic Synthesis and Analysis of the RoboMech Class Parallel Manipulator With Two Grippers
,”
Robotics
,
10
(
3
), pp.
99, 16
.
29.
Baigunchekov
,
Z.
,
Mustafa
,
A.
,
Sobh
,
T.
,
Patel
,
S.
, and
Utenov
,
M.
,
2020
, “
A RoboMech Class Parallel Manipulator With Three DOF
,”
East.-Eur. J. Enterp. Technol.
,
3
(
7–105
), pp.
44
56
.
30.
Baigunchekov
,
Z.
,
Izmambetov
,
M.
,
Zhumasheva
,
Z.
,
Baigunchekov
,
T.
, and
Mustafa
,
A.
,
2019
, “
Parallel Manipulator of a Class RoboMech for Generation of Horizontal Trajectories Family
,”
Mech. Mach. Sci.
,
73
, pp.
1395
1402
.
31.
Baigunchekov
,
Z.
,
Ibrayev
,
S.
,
Izmambetov
,
M.
,
Naurushev
,
B.
, and
Mustafa
,
A.
,
2019
, “
Synthesis of Cartesian Manipulator of a Class RoboMech
,”
Mech. Mach. Sci.
,
66
, pp.
69
76
.
32.
Assur
,
L.
,
1914
, “
Research of a Planar Linkage with Lower Pairs on the Basis of Their Structure and Classification
,”
Proceedings of the Saint-Petersburg Polytechnic Institute
,
Saint-Petersburg
, pp.
20
21
.
33.
Peng
,
H.
, and
Huafeng
,
D.
,
2020
, “
Structural Synthesis of Assur Groups With up to 12 Links and Creation of Their Classified Databases
,”
Mech. Mach. Theory
,
145
, p.
103668
.
34.
Yang
,
W.
,
Ding
,
H.
, and
Kecskeméthy
,
A.
,
2022
, “
Structural Synthesis Towards Intelligent Design of Planar Mechanisms: Current Status and Future Research Trend
,”
Mech. Mach. Theory
,
171
, pp.
104715
.
35.
Morlin
,
F. V.
,
Carboni
,
A. P.
, and
Martins
,
D.
,
2023
, “
Synthesis of Assur Groups via Group and Matroid Theory
,”
Mech. Mach. Theory
,
184
, pp.
105279
.
36.
Mlynarski
,
T.
,
1996
, “
Position Analysis of Planar Linkages Using the Method of Modification of Kinematic Unit
,”
Mech. Mach. Theory
,
31
(
6
), pp.
831
838
.
37.
Mitsi
,
S.
,
1999
, “
Position Analysis in Polynomial Form of Planar Mechanisms With a Closed Chain of the Assur Group of Class 4
,”
Mech. Mach. Theory
,
34
(
8
), pp.
1195
1209
.
38.
Mitsi
,
S.
,
Bouzakis
,
K. D.
, and
Mansour
,
G.
,
2004
, “
Position Analysis in Polynomial Form of Planar Mechanism With an Assur Group of Class 4 Including One Prismatic Joint
,”
Mech. Mach Theory
,
39
(
3
), pp.
237
245
.
39.
Han
,
L.
,
Liao
,
Q.
, and
Liang
,
C.
,
2000
, “
Closed-Form Displacement Analysis for a Nine-Link Barranov Truss or an Eight-Link Assur Group
,”
Mech. Mach. Theory
,
35
(
3
), pp.
379
390
.
40.
Zhang
,
Q.
,
Zou
,
H. J.
, and
Guo
,
W. Z.
,
2006
, “
Position Analysis of Higher-Class Assur Groups by Virtual Variable Searching and Its Application in a Multifunction Domestic Sewing Machine
,”
Int. J. Adv. Manuf. Technol.
,
28
(
5–6
), pp.
602
609
.
41.
Sun
,
Y. W.
,
Ge
,
W.
,
Zheng
,
G.
, and
Dong
,
D.
,
2016
, “
Solving the Kinematics of the Planar Mechanism Using Data Structures of Assur Groups
,”
ASME J. Mech. Rob.
,
8
(
6
), p.
061002
.
You do not currently have access to this content.