Abstract

This paper studies a special deployable 7R single-loop mechanism (SLM), which is characterized by its overconstraints, 1-DOF, and single-loop structure. Based on these characteristics, a series of performance evaluation indices, including the overconstraint performance, input and output motion/force transmission performance, and deploying/folding ratio, are proposed to evaluate its performance. To analyze these performances, the kinematics of the 7R SLM is analyzed. Then, these performance indices are used to evaluate the 7R SLM. The performance analysis result shows that the mechanism exhibits excellent performance. A 3D-printed prototype of the 7R overconstrained SLM is presented and used to assemble a deployable module. Their deploying motion verifies the assembly capability and deployability of the mechanism and its potential as a basic unit to construct more complex, overconstrained deployable mechanisms for aerospace platforms. This study plays a significant role in the analysis, design, and optimization of overconstrained SLMs while also providing theoretical support for applications in aerospace platforms and other related fields.

References

1.
Flores-Abad
,
A.
,
Ma
,
O.
,
Pham
,
K.
, and
Ulrich
,
S.
,
2014
, “
A Review of Space Robotics Technologies for On-Orbit Servicing
,”
Prog. Aerosp. Sci.
,
68
, pp.
1
26
.
2.
Li
,
W.-J.
,
Cheng
,
D.-Y.
,
Liu
,
X.-G.
,
Wang
,
Y.-B.
,
Shi
,
W.-H.
,
Tang
,
Z.-X.
,
Gao
,
F.
, et al
,
2019
, “
On-Orbit Service (OOS) of Spacecraft: A Review of Engineering Developments
,”
Prog. Aerosp. Sci.
,
108
, pp.
32
120
.
3.
Zhang
,
Y.
,
Xu
,
P.
, and
Li
,
B.
,
2023
, “
Structure Derivative Design, Network, and Kinematic Analysis of a Class of Two-Dimensional Deployable Mechanisms for Aerospace Platforms
,”
Mech. Mach. Theory
,
185
, p.
105314
.
4.
Tian
,
D.
,
Fan
,
X.
,
Zhang
,
J.
,
Jin
,
L.
,
Liu
,
R.
, and
Zhang
,
Y.
,
2022
, “
Networking Method for the Structure of a Large Modular Deployable Space Antenna
,”
Int. J. Aerosp. Eng.
,
2022
, pp.
1
13
.
5.
Tan
,
G.
,
Duan
,
X.
,
Niu
,
D.
, and
Ma
,
J.
,
2022
, “
Visual Synthesis of Uniaxial Synchronous Deployment Mechanisms for Solid-Surface Deployable Antennas
,”
Mech. Mach. Theory
,
178
, p.
105073
.
6.
Meng
,
Q.
,
Xie
,
F.
,
Tang
,
R.
, and
Liu
,
X.-J.
,
2022
, “
Novel Closed-Loop Deployable Mechanisms and Integrated Support Trusses for Planar Antennas of Synthetic Aperture Radar
,”
Aerosp. Sci. Technol.
,
129
, p.
107819
.
7.
Meng
,
Q.
,
2022
, “
Structure Design and Kinematic Analysis of a Class of Ring Truss Deployable Mechanisms for Satellite Antennas Based on Novel Basic Units
,”
Mech. Mach. Theory
, 174, p.
104881
.
8.
Liu
,
M.
,
2022
, “
Innovative Design and Optimization of the Modular High Deployment Ratio Two-Dimensional Planar Antenna Mechanism
,”
Mech. Mach. Theory
, p.
33
.
9.
Lim
,
J. H.
,
Kim
,
Y.-B.
,
Jang
,
I.-S.
,
Kim
,
H.
, and
Oh
,
H.-U.
,
2022
, “
Parabolic Deployable Mesh Antenna With a Hingeless System of Superelastic SMA Ribs and Composite Tape Springs
,”
Acta Astronaut.
,
200
, pp.
149
162
.
10.
Cao
,
W.
, and
Cheng
,
P.
,
2022
, “
Design and Kinematic Analysis of a Novel Deployable Antenna Mechanism for Synthetic Aperture Radar Satellites
,”
ASME J. Mech. Des.
,
144
(
11
), p.
114502
.
11.
Sun
,
Z.
,
Zhang
,
Y.
, and
Yang
,
D.
,
2021
, “
Structural Design, Analysis, and Experimental Verification of an H-Style Deployable Mechanism for Large Space-Borne Mesh Antennas
,”
Acta Astronaut.
,
178
, pp.
481
498
.
12.
Sun
,
Z.
,
Yang
,
D.
,
Duan
,
B.
,
Kong
,
L.
, and
Zhang
,
Y.
,
2021
, “
Structural Design, Dynamic Analysis, and Verification Test of a Novel Double-Ring Deployable Truss for Mesh Antennas
,”
Mech. Mach. Theory
,
165
, p.
104416
.
13.
Guo
,
J.
,
Zhao
,
Y.
,
Xu
,
Y.
,
Zhang
,
G.
, and
Yao
,
J.
,
2020
, “
A Novel Modular Deployable Mechanism for the Truss Antenna: Assembly Principle and Performance Analysis
,”
Aerosp. Sci. Technol.
,
105
, p.
105976
.
14.
Jia
,
G.
,
Huang
,
H.
,
Li
,
B.
,
Wu
,
Y.
,
Cao
,
Q.
, and
Guo
,
H.
,
2018
, “
Synthesis of a Novel Type of Metamorphic Mechanism Module for Large Scale Deployable Grasping Manipulators
,”
Mech. Mach. Theory
,
128
, pp.
544
559
.
15.
Jia
,
G.
,
Huang
,
H.
,
Wang
,
S.
, and
Li
,
B.
,
2021
, “
Type Synthesis of Plane-Symmetric Deployable Grasping Parallel Mechanisms Using Constraint Force Parallelogram Law
,”
Mech. Mach. Theory
,
161
, p.
104330
.
16.
Jia
,
G.
,
Li
,
B.
,
Huang
,
H.
, and
Zhang
,
D.
,
2020
, “
Type Synthesis of Metamorphic Mechanisms With Scissor-Like Linkage Based on Different Kinds of Connecting Pairs
,”
Mech. Mach. Theory
,
151
, p.
103848
.
17.
Wu
,
Y.
,
Huang
,
H.
,
Yang
,
X.
,
Li
,
B.
,
Jia
,
G.
, and
Cao
,
Q.
,
2018
, “
Design and Analysis of a Quadrangular Truss-Shaped Deployable Robotic Manipulator for Grasping Large Scale Objects
,”
2018 IEEE International Conference on Cyborg and Bionic Systems (CBS)
,
Shenzhen, China
,
Oct. 25–27
, IEEE, pp.
460
465
.
18.
Li
,
G.
,
Huang
,
H.
,
Guo
,
H.
, and
Li
,
B.
,
2019
, “
Design, Analysis and Control of a Novel Deployable Grasping Manipulator
,”
Mech. Mach. Theory
,
138
, pp.
182
204
.
19.
Li
,
G.
, and
Xu
,
P.
,
2020
, “
Design and Analysis of a Deployable Grasping Mechanism for Capturing Non-Cooperative Space Targets
,”
Aerosp. Sci. Technol.
,
106
, p.
106230
.
20.
Wang
,
N.
,
Fang
,
Y.
, and
Zhang
,
D.
,
2015
, “
A Spatial Single Loop Kinematotropic Mechanism Used for Biped/Wheeled Switchable Robots
,”
Int. J. Mech. Mater. Des.
,
11
(
3
), pp.
287
299
.
21.
Guo
,
H.
,
Song
,
X.
,
Li
,
L.
,
Deng
,
Z.
,
Liu
,
R.
, and
Geng
,
J.
,
2018
, “
Type Synthesis of Deployable Single-Loop Overconstrained Linkages Based on Bennett Linkages
,”
Mech. Mach. Theory
,
120
, pp.
1
29
.
22.
Kong
,
X.
,
2016
, “
Geometric Construction and Kinematic Analysis of a 6R Single-Loop Overconstrained Spatial Mechanism That Has Three Pairs of Revolute Joints With Intersecting Joint Axes
,”
Mech. Mach. Theory
,
102
, pp.
196
202
.
23.
Kong
,
X.
, and
Pfurner
,
M.
,
2015
, “
Type Synthesis and Reconfiguration Analysis of a Class of Variable-DOF Single-Loop Mechanisms
,”
Mech. Mach. Theory
,
85
, pp.
116
128
.
24.
Kong
,
X.
,
2014
, “
Type Synthesis of Single-Loop Overconstrained 6R Spatial Mechanisms for Circular Translation
,”
ASME J. Mech. Rob.
,
6
(
4
), p.
041016
.
25.
Liu
,
Y.
,
Yao
,
Y.
,
Kong
,
X.
, and
Li
,
Y.
,
2023
, “
Type Synthesis of Reconfigurable Single-Loop Mechanisms Based on Planar Rhombus Mechanisms
,”
Mech. Mach. Theory
,
181
, p.
105170
.
26.
Qi
,
X.
,
Huang
,
H.
,
Miao
,
Z.
,
Li
,
B.
, and
Deng
,
Z.
,
2017
, “
Design and Mobility Analysis of Large Deployable Mechanisms Based on Plane-Symmetric Bricard Linkage
,”
ASME J. Mech. Des.
,
139
(
2
), p.
022302
.
27.
López-Custodio
,
P. C.
,
Müller
,
A.
,
Rico
,
J. M.
, and
Dai
,
J. S.
,
2019
, “
A Synthesis Method for 1-DOF Mechanisms With a Cusp in the Configuration Space
,”
Mech. Mach. Theory
,
132
, pp.
154
175
.
28.
Song
,
C. Y.
,
Chen
,
Y.
, and
Chen
,
I.-M.
,
2013
, “
A 6R Linkage Reconfigurable Between the Line-Symmetric Bricard Linkage and the Bennett Linkage
,”
Mech. Mach. Theory
,
70
, pp.
278
292
.
29.
Wang
,
R.
,
Sun
,
J.
, and
Dai
,
J. S.
,
2019
, “
Design Analysis and Type Synthesis of a Petal-Inspired Space Deployable-Foldable Mechanism
,”
Mech. Mach. Theory
,
141
, pp.
151
170
.
30.
Wei
,
G.
,
Chen
,
Y.
, and
Dai
,
J. S.
,
2014
, “
Synthesis, Mobility, and Multifurcation of Deployable Polyhedral Mechanisms With Radially Reciprocating Motion
,”
ASME J. Mech. Des.
,
136
(
9
), p.
091003
.
31.
Wei
,
G.
, and
Dai
,
J. S.
,
2014
, “
A Spatial Eight-Bar Linkage and Its Association With the Deployable Platonic Mechanisms
,”
ASME J. Mech. Rob.
,
6
(
2
), p.
021010
.
32.
Wei
,
G.
, and
Dai
,
J. S.
,
2014
, “
An Overconstrained Eight-Bar Linkage and Its Associated Fulleroid-Like Deployable Platonic Mechanisms
,”
Volume 5B: 38th Mechanisms and Robotics Conference
,
Buffalo, NY
,
Aug. 17–20
, American Society of Mechanical Engineers, p.
V05BT08A005
.
33.
Kong
,
X.
,
2017
, “
Reconfiguration Analysis of Multimode Single-Loop Spatial Mechanisms Using Dual Quaternions
,”
ASME J. Mech. Rob.
,
9
(
5
), p.
051002
.
34.
Kong
,
X.
,
2015
, “
Kinematic Analysis of a 6R Single-Loop Overconstrained Spatial Mechanism for Circular Translation
,”
Mech. Mach. Theory
,
93
, pp.
163
174
.
35.
Kong
,
X.
,
He
,
X.
, and
Li
,
D.
,
2018
, “
A Double-Faced 6R Single-Loop Overconstrained Spatial Mechanism
,”
ASME J. Mech. Rob.
,
10
(
3
), p.
031013
.
36.
Arponen
,
T.
,
Piipponen
,
S.
, and
Tuomela
,
J.
,
2009
, “
Kinematic Analysis of Bricard’s Mechanism
,”
Nonlinear Dyn.
,
56
(
1–2
), pp.
85
99
.
37.
Chen
,
Z.
,
2016
, “
Motion and Singularity Analysis of a Spatial Single-Loop RPSC Mechanism
,”
JME
,
52
(
13
), p.
17
.
38.
He
,
X.
,
Kong
,
X.
,
Chablat
,
D.
,
Caro
,
S.
, and
Hao
,
G.
,
2014
, “
Kinematic Analysis of a Single-Loop Reconfigurable 7R Mechanism With Multiple Operation Modes
,”
Robotica
,
32
(
7
), pp.
1171
1188
.
39.
Li
,
X.
,
Ge
,
X.
,
Purwar
,
A.
, and
Ge
,
Q. J.
,
2015
, “
A Unified Algorithm for Analysis and Simulation of Planar Four-Bar Motions Defined With R- and P-Joints
,”
ASME J. Mech. Rob.
,
7
(
1
), p.
011014
.
40.
Liu
,
K.
,
Yu
,
J.
, and
Kong
,
X.
,
2021
, “
Structure Synthesis and Reconfiguration Analysis of Variable-Degree-of-Freedom Single-Loop Mechanisms With Prismatic Joints Using Dual Quaternions
,”
ASME J. Mech. Rob.
,
14
(
2
), p.
021009
.
41.
Milenkovic
,
P.
,
2010
, “
Mobility of Single-Loop Kinematic Mechanisms Under Differential Displacement
,”
ASME J. Mech. Des.
,
132
(
4
), p.
041001
.
42.
Pfurner
,
M.
,
Kong
,
X.
, and
Huang
,
C.
,
2014
, “
Complete Kinematic Analysis of Single-Loop Multiple-Mode 7-Link Mechanisms Based on Bennett and Overconstrained RPRP Mechanisms
,”
Mech. Mach. Theory
,
73
, pp.
117
129
.
43.
Pfurner
,
M.
,
Stigger
,
T.
, and
Husty
,
M. L.
,
2017
, “
Algebraic Analysis of Overconstrained Single Loop Four Link Mechanisms With Revolute and Prismatic Joints
,”
Mech. Mach. Theory
,
114
, pp.
11
19
.
44.
Qi
,
X.
,
Huang
,
H.
,
Li
,
B.
, and
Deng
,
Z.
,
2016
, “
A Large Ring Deployable Mechanism for Space Satellite Antenna
,”
Aerosp. Sci. Technol.
,
58
, pp.
498
510
.
45.
Song
,
C.-Y.
,
Chen
,
Y.
, and
Chen
,
I.-M.
,
2014
, “
Kinematic Study of the Original and Revised General Line-Symmetric Bricard 6R Linkages
,”
ASME J. Mech. Rob.
,
6
(
3
), p.
031002
.
46.
Song
,
X.
,
Guo
,
H.
,
Liu
,
R.
,
Meng
,
F.
,
Chen
,
Q.
,
Xu
,
Y.
, and
Liu
,
R.
,
2020
, “
Mobility Analysis of the Threefold-Symmetric Bricard Linkage and Its Network
,”
ASME J. Mech. Rob.
,
12
(
1
), p.
011013
.
47.
Zhang
,
K.
, and
Dai
,
J. S.
,
2016
, “
Geometric Constraints and Motion Branch Variations for Reconfiguration of Single-Loop Linkages With Mobility One
,”
Mech. Mach. Theory
,
106
, pp.
16
29
.
48.
Tan
,
G.
,
Duan
,
X.
,
Yang
,
D.
,
Ma
,
J.
, and
Zhang
,
D.
,
2022
, “
Parametric Design Optimization Approach to Petal-Type Solid Surface Deployable Reflectors
,”
Acta Astronaut.
,
197
, pp.
280
297
.
49.
Wang
,
J.
,
Wu
,
C.
, and
Liu
,
X.-J.
,
2010
, “
Performance Evaluation of Parallel Manipulators: Motion/Force Transmissibility and its Index
,”
Mech. Mach. Theory
,
45
(
10
), pp.
1462
1476
.
50.
Liang
,
X.
, and
Takeda
,
Y.
,
2019
, “
Transmission Index of a Class of Parallel Manipulators With 3-RS(SR) Primary Structures Based on Pressure Angle and Equivalent Mechanism With 2-SS Chains Replacing RS Chain
,”
Mech. Mach. Theory
,
139
, pp.
359
378
.
51.
Chen
,
C.
, and
Angeles
,
J.
,
2005
, “
A Generalized Transmission Index for Spatial Linkages
,”
Volume 7: 29th Mechanisms and Robotics Conference, Parts A and B
,
Long Beach, CA
,
Sept. 24–28
, ASMEDC, pp.
749
756
.
52.
Chen
,
C.
, and
Angeles
,
J.
,
2007
, “
Generalized Transmission Index and Transmission Quality for Spatial Linkages
,”
Mech. Mach. Theory
,
42
(
9
), pp.
1225
1237
.
53.
Kong
,
X.
, and
Müller
,
A.
,
2018
, “
A Single-Loop 7R Spatial Mechanism That Has Three Motion Modes With the Same Instantaneous DOF but Different Finite DOF
,”
ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, ASME Paper No. DETC2018-85125.
54.
Kong
,
X.
, and
Gosselin
,
C. M.
,
2007
,
Type Synthesis of Parallel Mechanisms
,
Springer
,
New York
.
You do not currently have access to this content.