Abstract

This study addressed the development of a novel compliant constant-torque mechanism (CCTM) that utilizes Bezier curved beams to provide a large stroke in the constant-torque operating range. Previous CCTMs are limited by their working stroke, which reduces their applicability. The proposed mechanism is based on an analytical model using the chained beam-constraint model (CBCM), which captures the kinetostatic behavior of flexible segments. A genetic algorithm based on the CBCM was used to obtain the optimal structure, which was then verified through finite element analysis and experimental results. The results show that the proposed CCTM provides good flatness with a deviation of 3.7% and a large stroke of 80 deg in the constant-torque working range, while maintaining compactness. This novel CCTM has the potential to provide a simple and effective solution for torque regulators in various applications.

References

1.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
Wiley
,
New York
.
2.
Qiu
,
J.
,
Lang
,
J.
, and
Slocum
,
A.
,
2004
, “
A Curved-Beam Bistable Mechanism
,”
J. Microelectromech. Syst.
,
13
(
2
), pp.
137
146
.
3.
Pham
,
H.-T.
, and
Wang
,
D.-A.
,
2011
, “
A Quadristable Compliant Mechanism With a Bistable Structure Embedded in a Surrounding Beam Structure
,”
Sens. Actuators, A
,
167
(
2
), pp.
438
448
.
4.
Lamers
,
A. J.
,
Gallego Sánchez
,
J. A.
, and
Herder
,
J. L.
,
2015
, “
Design of a Statically Balanced Fully Compliant Grasper
,”
Mech. Mach. Theory
,
92
, pp.
230
239
.
5.
Pham
,
H.-T.
, and
Wang
,
D.-A.
,
2011
, “
A Constant-Force Bistable Mechanism for Force Regulation and Overload Protection
,”
Mech. Mach. Theory
,
46
(
7
), pp.
899
909
.
6.
Hou
,
C.-W.
, and
Lan
,
C.-C.
,
2013
, “
Functional Joint Mechanisms With Constant-Torque Outputs
,”
Mech. Mach. Theory
,
62
, pp.
166
181
.
7.
Saerens
,
E.
,
Furnémont
,
R.
,
Legrand
,
J.
,
Langlois
,
K.
,
López García
,
P.
,
Crispel
,
S.
,
Rossini
,
M.
,
Verstraten
,
T.
,
Vanderborght
,
B.
, and
Lefeber
,
D.
,
2022
, “
Constant Torque Mechanisms: A Survey
,”
ASME Appl. Mech. Rev.
,
74
(
1
), p.
010802
.
8.
Ling
,
J.
,
Ye
,
T.
,
Feng
,
Z.
,
Zhu
,
Y.
,
Li
,
Y.
, and
Xiao
,
X.
,
2022
, “
A Survey on Synthesis of Compliant Constant Force/Torque Mechanisms
,”
Mech. Mach. Theory
,
176
, p.
104970
.
9.
Phan
,
T.-V.
,
Pham
,
H.-T.
, and
Truong
,
C.-N.
,
2020
, “
Design and Analysis of a Compliant Constant-Torque Mechanism for Rehabilitation Devices
,”
Proc. Advanced Materials
,
Hanoi, Vietnam
,
Nov. 7–10
, pp.
541
549
.
10.
Cheng
,
Z.
,
Savarimuthu
,
T. R.
,
Foong
,
S.
, and
Tan
,
U. X.
,
2023
, “
Design of Adjustable Constant Force/Torque Mechanisms for Medical Applications
,”
ASME J. Mech. Rob.
,
15
(
2
), p.
025001
.
11.
Wang
,
P.
,
Yang
,
S.
, and
Xu
,
Q.
,
2018
, “
Design and Optimization of a New Compliant Rotary Positioning Stage With Constant Output Torque
,”
Int. J. Precis. Eng. Manuf.
,
19
(
12
), pp.
1843
1850
.
12.
Bilancia
,
P.
,
Smith
,
S. P.
,
Berselli
,
G.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2020
, “
Zero Torque Compliant Mechanisms Employing Pre-Buckled Beams
,”
ASME J. Mech. Des.
,
142
(
11
), p.
113301
.
13.
Zhang
,
C.
,
He
,
J.
,
Zhou
,
G.
,
Wang
,
K.
,
Xu
,
D.
, and
Zhou
,
J.
,
2023
, “
Compliant Quasi-Zero-Stiffness Isolator for Low-Frequency Torsional Vibration Isolation
,”
Mech. Mach. Theory
,
181
, p.
105213
.
14.
Li
,
B.
, and
Hao
,
G.
,
2019
, “
On Generating Expected Kinetostatic Nonlinear Stiffness Characteristics by the Kinematic Limb-Singularity of a Crank-Slider Linkage With Springs
,”
Chin. J. Mech. Eng.
,
32
(
1
), p.
54
.
15.
Qiu
,
L.
,
Li
,
C.
,
Dai
,
S.
, and
Yu
,
Y.
,
2022
, “
Research on the Line-Arc-Line Constant-Torque Flexure Hinge (LAL-CTFH) Based on Improved Pseudo-Rigid-Body Model (PRBM)
,”
Mech. Mach. Theory
,
174
, p.
104878
.
16.
Prakashah
,
H. N.
, and
Zhou
,
H.
,
2016
, “
Synthesis of Constant Torque Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
8
(
6
), p.
064503
.
17.
Gandhi
,
I.
, and
Zhou
,
H.
,
2018
, “
Synthesizing Constant Torque Compliant Mechanisms Using Precompressed Beams
,”
ASME J. Mech. Des.
,
141
(
1
), p.
014501
.
18.
Thanaki
,
M.
, and
Zhou
,
H.
,
2018
, “
Synthesizing Bidirectional Constant Torque Compliant Mechanisms Using Precompressed Beams
,”
ASME 2018 International Mechanical Engineering Congress and Exposition
,
Pittsburgh, PA
,
Nov. 9–15
.
19.
Ye
,
T.
,
Ling
,
J.
,
Kang
,
X.
,
Feng
,
Z.
, and
Xiao
,
X.
,
2021
, “
A Novel Two-Stage Constant Force Compliant Microgripper
,”
ASME J. Mech. Des.
,
143
(
5
), p.
053302
.
20.
Xu
,
Q.
,
2017
, “
Design of a Large-Stroke Bistable Mechanism for the Application in Constant-Force Micropositioning Stage
,”
ASME J. Mech. Rob.
,
9
(
1
), p.
011006
.
21.
Phan
,
T.-V.
, and
Pham
,
H.-T.
,
2022
, “
Design and Optimization of a Large-Stroke Compliant Constant-Torque Mechanism
,”
J. Tech. Educ. Sci.
,
68
, pp.
93
100
.
22.
Rai
,
A. K.
,
Saxena
,
A.
, and
Mankame
,
N. D.
,
2006
, “
Synthesis of Path Generating Compliant Mechanisms Using Initially Curved Frame Elements
,”
ASME J. Mech. Des.
,
129
(
10
), pp.
1056
1063
.
23.
Venkiteswaran
,
V. K.
, and
Su
,
H.-J.
,
2016
, “
Pseudo-Rigid-Body Models for Circular Beams Under Combined Tip Loads
,”
Mech. Mach. Theory
,
106
, pp.
80
93
.
24.
Ma
,
F.
, and
Chen
,
G.
,
2015
, “
Modeling Large Planar Deflections of Flexible Beams in Compliant Mechanisms Using Chained Beam-Constraint-Model
,”
ASME J. Mech. Rob.
,
8
(
2
), p.
021018
.
25.
Awtar
,
S.
,
Slocum
,
A. H.
, and
Sevincer
,
E.
,
2006
, “
Characteristics of Beam-Based Flexure Modules
,”
ASME J. Mech. Des.
,
129
(
6
), pp.
625
639
.
26.
Shusheng
,
B.
,
Hongzhe
,
Z.
, and
Jingjun
,
Y.
,
2009
, “
Modeling of a Cartwheel Flexural Pivot
,”
ASME J. Mech. Des.
,
131
(
6
), p.
061010
.
27.
Zhang
,
Q.
,
Yan
,
P.
, and
Wang
,
H.
,
2022
, “
A Curved-Beam Based Quasi-Constant Force Mechanism Supporting Large Range and Force-Sensitive Robotic Manipulation
,”
Mech. Mach. Theory
,
172
, p.
104799
.
28.
Chen
,
G.
,
2019
, “
Modeling Large Deflections of Initially Curved Beams in Compliant Mechanisms Using Chained Beam Constraint Model
,”
ASME J. Mech. Rob.
,
11
(
1
), p.
011002
.
29.
Ma
,
F.
,
Chen
,
G.
, and
Wang
,
H.
,
2020
, “
Large-Stroke Constant-Force Mechanisms Utilizing Second Buckling Mode of Flexible Beams: Evaluation Metrics and Design Approach
,”
ASME J. Mech. Des.
,
142
(
10
), p.
103303
.
30.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
,
6
(
2
), pp.
182
197
.
31.
Deb
,
K.
,
Agrawal
,
S.
,
Pratap
,
A.
, and
Meyarivan
,
T.
, “
A Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II
,”
Proc. Parallel Problem Solving From Nature PPSN VI
,
Paris, France
,
Sept. 18–20
, pp.
849
858
.
32.
Zhou
,
H.
, and
Ting
,
K.-L.
,
2005
, “
Shape and Size Synthesis of Compliant Mechanisms Using Wide Curve Theory
,”
ASME J. Mech. Des.
,
128
(
3
), pp.
551
558
.
33.
Awtar
,
S.
, and
Sen
,
S.
,
2010
, “
A Generalized Constraint Model for Two-Dimensional Beam Flexures: Nonlinear Load-Displacement Formulation
,”
ASME J. Mech. Des.
,
132
(
8
), p.
081008
.
34.
Awtar
,
S.
,
Shimotsu
,
K.
, and
Sen
,
S.
,
2010
, “
Elastic Averaging in Flexure Mechanisms: A Three-Beam Parallelogram Flexure Case Study
,”
ASME J. Mech. Rob.
,
2
(
4
), p.
041006
.
35.
Mackay
,
A. B.
,
Smith
,
D. G.
,
Magleby
,
S. P.
,
Jensen
,
B. D.
, and
Howell
,
L. L.
,
2012
, “
Metrics for Evaluation and Design of Large-Displacement Linear-Motion Compliant Mechanisms
,”
ASME J. Mech. Des.
,
134
(
1
), p.
011008
.
You do not currently have access to this content.