Abstract

An inverse kinematic mapping for redundant serial manipulators is presented at the configuration level, for which periodic manipulator operational trajectories map into periodic input trajectories, i.e., for which serial manipulators are cyclic. The inverse kinematic mapping defines a differentiable manifold on which output and self-motion coordinates comprise operational coordinates that represent manipulator redundant degrees-of-freedom. The inverse kinematic mapping and differentiable manifold are defined in analytical form and a computational method for their evaluation is presented. Numerical examples are presented to illustrate the validity of the formulation on subsets of manipulator regular configuration space, or on the entire space.

References

1.
Chiaverini
,
S.
,
Oriolo
,
G.
, and
Maciejewski
,
A. A.
,
2016
, “Redundant Robots,”
Springer Handbook of Robotics
, 2nd ed.,
A
.
Siciliano
, and
A
.
Khatib
, eds.,
Springer-Verlag
,
Berlin
.
2.
Whitney
,
D. E.
,
1969
, “
Resolved Motion Rate Control of Manipulators and Human Prostheses
,”
IEEE Trans. Man-Mach. Syst.
,
10
(
2
), pp.
47
53
.
3.
Haug
,
E. J.
, and
Peidro
,
A.
,
2022
, “
Redundant Manipulator Kinematics and Dynamics on Differentiable Manifolds
,”
ASME J. Comput. Nonlinear Dyn.
,
17
(
11
), p.
111008
.
4.
Haack
,
W.
, and
Wendland
,
W.
,
1972
,
Lectures on Partial and Pfaffian Differential Equations
,
Pergamon Press
,
Oxford
.
5.
Atkinson
,
K. E.
,
1989
,
An Introduction to Numerical Analysis
, 2nd ed.,
Wiley
,
New York
.
6.
Klein
,
C. A.
, and
Huang
,
C.-H.
,
1983
, “
Review of Pseudoinverse Control for Use With Kinematically Redundant Manipulators
,”
IEEE Trans. Syst., Man, Cybern.
,
SMC-13
(
3
), pp.
245
250
.
7.
De Luca
,
A.
, and
Oriolo
,
G.
,
1997
, “
Nonholonomic Behavior in Redundant Robots Under Kinematic Control
,”
IEEE Trans. Rob. Autom.
,
13
(
5
), pp.
776
782
.
8.
Shamir
,
T.
, and
Yomdin
,
Y.
,
1988
, “
Repeatability of Redundant Manipulators: Mathematical Solution of the Problem
,”
IEEE Trans. Automat. Contr.
,
33
(
11
), pp.
1004
1009
.
9.
Oriolo
,
G.
,
Cefalo
,
M.
, and
Vendittelli
,
M.
,
2017
, “
Repeatable Motion Planning for Redundant Robots Over Cyclic Tasks
,”
IEEE Trans. Rob.
,
33
(
5
), pp.
1170
1183
.
10.
Mussa-Ivaldi
,
F. A.
, and
Hogan
,
N.
,
1991
, “
Integrable Solutions of Kinematic Redundancy Via Impedance Control
,”
Int. J. Rob. Res.
,
10
(
5
), pp.
481
491
.
11.
Karpinska
,
J.
, and
Tchon
,
K.
,
2012
, “
Performance-Oriented Design of Inverse Kinematics Algorithms: Extended Jacobian Approximation of the Jacobian Pseudo-Inverse
,”
ASME J. Mech. Rob.
,
4
(
2
), p.
021008
.
12.
Simas
,
H.
, and
Di Gregorio
,
R.
,
2010
, “
A Technique Based on Adaptive Extended Jacobians for Improving the Robustness of the Inverse Numerical Kinematics of Redundant Robots
,”
ASME J. Mech. Rob.
,
11
(
2
), p.
020913
.
13.
Guo
,
D.
,
Li
,
Z.
,
Khan
,
A. H.
,
Feng
,
Q.
, and
Cai
,
J.
,
2021
, “
Repetitive Motion Planning of Robotic Manipulators With Guaranteed Precision
,”
IEEE Trans. Ind. Inf.
,
17
(
1
), pp.
356
366
.
14.
Roberts
,
R. G.
, and
Maciejewski
,
A. A.
,
1993
, “
Repeatable Generalized Inverse Control Strategies for Kinematically Redundant Manipulators
,”
IEEE Trans. Automat. Contr.
,
38
(
5
), pp.
689
699
.
15.
Bowling
,
A.
, and
Harmeyer
,
S.
,
2010
, “
Repeatable Redundant Manipulator Control Using Nullspace Quasivelocities
,”
ASME J. Dyn. Syst. Meas. Control
,
132
(
3
), p.
31007
.
16.
Zhang
,
Z.
, and
Shang
,
Y.
,
2012
, “
Acceleration-Level Cyclic-Motion Generation of Constrained Redundant Robots Tracking Different Paths
,”
IEEE Trans. Syst., Man, Cybern., Part B
,
42
(
4
), pp.
1257
1269
.
17.
Safeea
,
M.
,
Bearee
,
R.
, and
Neto
,
P.
,
2021
, “
A Modified DLS Scheme With Controlled Cyclic Solution for Inverse Kinematics in Redundant Robots
,”
IEEE Trans. Ind. Inf.
,
17
(
12
), pp.
8014
8023
.
18.
Cefalo
,
M.
,
Oriolo
,
G.
, and
Vendittilli
,
M.
,
2013
, “
Planning Safe Cyclic Motions Under Repetitive Task Constraints
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Karlsruhe, Germany
,
May 6–10
, pp.
3807
3812
.
19.
Guillemin
,
V.
, and
Pollack
,
A. R.
,
1974
,
Differential Topology
,
AMS Chelsea Publishing
,
Providence, RI
.
20.
Corwin
,
L. J.
, and
Szczarba
,
R. H.
,
1982
,
Multivariable Calculus
,
Marcel Dekker
,
New York
.
You do not currently have access to this content.