Abstract

This paper investigates the methodology and techniques for a soft biomimetic robot fish that has a straightforward design, relatively simple fabrication, and low cost. In addition to the investigations of fabrication techniques, we also explore the numerical analysis of the biological fish swimming performance, with its inspiration for robot fish design, which is less studied in the literature. In this research, therefore, various swimming locomotion patterns within the body and/or caudal fin family are analyzed for kinematics and hydrodynamics using analytical methods and computational fluid dynamics (CFD) to inspire the robot fish design for improved swimming performance. By straightforward design and fabrication, the swimming performance of the numerical robot fish is verified by means of simulation using 3D CFD, and the prototype performance is validated using in-water experimental tests. This study showcases a new easy-to-design and easy-to-fabricate robust biomimetic robot fish with comparable swimming performance, which has good potential for purposes like education, research, and entertainment.

References

1.
Beal
,
D. N.
,
Hover
,
F. S.
,
Triantafyllou
,
M. S.
,
Liao
,
J. C.
, and
Lauder
,
G. V.
,
2006
, “
Passive Propulsion in Vortex Wakes
,”
J. Fluid. Mech.
,
549
(
1
), pp.
385
402
.
2.
Lauder
,
G. V.
, and
Drucker
,
E. G.
,
2004
, “
Morphology and Experimental Hydrodynamics of Fish Fin Control Surfaces
,”
IEEE J. Ocean. Eng.
,
29
(
3
), pp.
556
571
.
3.
Low
,
K. H.
, and
Chong
,
C. W.
,
2010
, “
Parametric Study of the Swimming Performance of a Fish Robot Propelled by a Flexible Caudal Fin
,”
Bioinsp. Biomim.
,
5
(
4
), p.
046002
.
4.
Bandyopadhyay
,
P. R.
,
2005
, “
Trends in Biorobotic Autonomous Undersea Vehicles
,”
IEEE J. Ocean. Eng.
,
30
(
1
), pp.
109
139
.
5.
Chong
,
C. W.
,
Zhong
,
Y.
,
Zhou
,
C. L.
,
Low
,
K. H.
,
Gerald
,
S. G. L.
, and
Lim
,
H. B.
,
2009
, “
Can the Swimming Thrust of BCF Biomimetics Fish Be Enhanced
,”
2008 IEEE International Conference on Robotics and Biomimetics
,
Bangkok, Thailand
,
Feb. 22–25
, pp.
437
442
.
6.
Breder
,
C. M.
,
1926
, “
The Locomotion of Fishes
,”
Zoologica: Scientific Contributions of the New York Zoological Society
,
4
(
5
), pp.
159
297
.
7.
Videler
,
J. J.
,
1993
,
Fish Swimming
, 1st ed.,
Springer Netherlands
,
Dordrecht
.
8.
Chowdhury
,
A. R.
,
Kumar
,
V.
,
Prasad
,
B.
,
Kumar
,
R.
, and
Panda
,
S. K.
,
2014
, “
Model-Based Control of a BCF Mode Carangiform Bioinspired Robotic Fish
,”
Marine Technol. Soc. J.
,
48
(
4
), pp.
36
50
.
9.
Karavaev
,
Y.
,
Klekovkin
,
A.
,
Mamaev
,
I.
,
Tenenev
,
V.
, and
Vetchanin
,
E.
,
2022
, “
A Simple Physical Model for Control of a Propellerless Aquatic Robot
,”
ASME J. Mech. Rob.
,
14
(
1
), p.
011007
.
10.
Webb
,
P. W.
,
1975
,
Fish Swimming
,
Bulletin of the Fisheries Research Board of Canada
,
Ottawa, Canada
.
11.
Sfakiotakis
,
M.
,
Lane
,
D.
, and
Davies
,
J.
,
1999
, “
Review of Fish Swimming Modes for Aquatic Locomotion
,”
IEEE J. Oceanic Eng.
,
24
(
2
), pp.
237
252
.
12.
Siciliano
,
B.
, and
Khatib
,
O.
,
2016
,
Springer Handbook of Robotics
, 2nd ed.,
Springer
,
Berlin/Heidelberg
.
13.
Kumph
,
J. M.
,
2000
, “Maneuvering of a Robotic Pike,” Master’s thesis, Massachusetts Institute of Technology, Boston, MA.
14.
Anderson
,
J. M.
, and
Chhabra
,
N. K.
,
2002
, “
Maneuvering and Stability Performance of a Robotic Tuna
,”
Integr. Comp. Biol.
,
42
(
1
), pp.
118
126
.
15.
Du
,
R.
,
Li
,
Z.
,
Youcef-Toumi
,
K.
, and
Valdivia y Alvarado
,
P.
,
2015
,
Robot Fish: Bio-Inspired Fishlike Underwater Robots
,
Springer Berlin
,
Heidelberg
.
16.
Tong
,
R.
,
Wu
,
Z.
,
Chen
,
D.
,
Wang
,
J.
,
Du
,
S.
,
Tan
,
M.
, and
Yu
,
J.
,
2022
, “
Design and Optimization of an Untethered High-Performance Robotic Tuna
,”
IEEE/ASME Trans. Mechatron.
,
27
(
5
), pp.
4132
4142
.
17.
Yu
,
J.
,
Tan
,
M.
,
Wang
,
S.
, and
Chen
,
E.
,
2004
, “
Development of a Biomimetic Robotic Fish and Its Control Algorithm
,”
IEEE Trans. Syst., Man, Cybernet., Part B (Cybernetics)
,
34
(
4
), pp.
1798
1810
.
18.
Zhong
,
Y.
,
Song
,
J.
,
Yu
,
H.
, and
Du
,
R.
,
2018
, “
A Study on Kinematic Pattern of Fish Undulatory Locomotion Using a Robot Fish
,”
ASME J. Mech. Rob.
,
10
(
4
), p.
041013
.
19.
Valdivia y Alvarado
,
P.
, and
Youcef-Toumi
,
K.
,
2005
, “
Design of Machines With Compliant Bodies for Biomimetic Locomotion in Liquid Environments
,”
ASME J. Dyn. Syst. Meas. Contr.
,
128
(
1
), pp.
3
13
.
20.
Zhao
,
Q.
,
Chen
,
J.
,
Zhang
,
H.
,
Zhang
,
Z.
,
Liu
,
Z.
,
Di
,
J.
,
He
,
G.
,
Zhao
,
L.
, and
Zhang
,
M.
,
2022
, “
Hydrodynamics Modeling of a Piezoelectric Micro-Robotic Fish With Double Caudal Fins
,”
ASME J. Mech. Rob.
,
14
(
3
), p.
034502
.
21.
Chowdhury
,
A. R.
,
Xue
,
W.
,
Behera
,
M. R.
, and
Panda
,
S. K.
,
2016
, “
Hydrodynamics Study of a BCF Mode Bioinspired Robotic-Fish Underwater Vehicle Using Lighthill’s Slender Body Model
,”
J. Marine Sci. Technol.
,
21
(
1
), pp.
102
114
.
22.
Chen
,
Z.
,
Shatara
,
S.
, and
Tan
,
X.
,
2010
, “
Modeling of Biomimetic Robotic Fish Propelled by an Ionic Polymer–Metal Composite Caudal Fin
,”
IEEE/ASME Trans. Mechatron.
,
15
(
3
), pp.
448
459
.
23.
Dickinson
,
M. H.
,
Farley
,
C. T.
,
Full
,
R. J.
,
Koehl
,
M. A.
,
Kram
,
R.
, and
Lehman
,
S.
,
2004
, “
Development of a Biomimetic Robotic Fish and Its Control Algorithm
,”
IEEE Trans. Syst., Man, Cybernetics, Part B (Cybernetics)
,
34
(
4
), pp.
1798
1810
.
24.
Feeny
,
B. F.
,
2008
, “
A Complex Orthogonal Decomposition for Wave Motion Analysis
,”
J. Sound. Vib.
,
310
(
1
), pp.
77
90
.
25.
Bainbridge
,
R.
,
1958
, “
The Speed of Swimming of Fish as Related to Size and to the Frequency and Amplitude of the Tail Beat
,”
J. Exp. Biol.
,
35
(
1
), pp.
109
133
.
26.
Cui
,
Z.
,
Yang
,
Z.
,
Shen
,
L.
, and
Jiang
,
H.
,
2018
, “
Complex Modal Analysis of the Movements of Swimming Fish Propelled by Body and/or Caudal Fin
,”
Wave Motion
,
78
, pp.
83
97
.
27.
Dong
,
H.
,
Wu
,
Z.
,
Chen
,
D.
,
Tan
,
M.
, and
Yu
,
J.
,
2020
, “
Development of a Whale-Shark-Inspired Gliding Robotic Fish With High Maneuverability
,”
IEEE/ASME Trans. Mechatron.
,
25
(
6
), pp.
2824
2834
.
28.
Xie
,
F.
,
Zuo
,
Q.
,
Chen
,
Q.
,
Fang
,
H.
,
He
,
K.
,
Du
,
R.
,
Zhong
,
Y.
, and
Li
,
Z.
,
2021
, “
Designs of the Biomimetic Robotic Fishes Performing Body and/or Caudal Fin (BCF) Swimming Locomotion: A Review
,”
J. Intell. Rob. Syst.
,
102
(
1
), pp.
1
19
.
29.
Chowdhury
,
A. R.
,
Prasad
,
B.
,
Kumar
,
V.
,
Kumar
,
R.
, and
Panda
,
S. K.
,
2011
, “
Design, Modeling and Open-Loop Control of a BCF Mode Bio-Mimetic Robotic Fish
,”
2011 IEEE International Symposium on Safety, Security, and Rescue Robotics
,
Kyoto, Japan
,
Nov. 1–5
, pp.
226
231
.
30.
Jayne
,
B. C.
, and
Lauder
,
G. V.
,
1995
, “
Speed Effects on Midline Kinematics During Steady Undulatory Swimming of Largemouth Bass, Micropterus Salmoides
,”
J. Exp. Biol.
,
198
(
2
), pp.
585
602
.
31.
Donley
,
J. M.
, and
Dickson
,
K. A.
,
2000
, “
Swimming Kinematics of Juvenile Kawakawa Tuna (Euthynnus Affinis) and Chub Mackerel (Scomber Japonicus)
,”
J. Exp. Biol.
,
203
(
20
), pp.
3103
3116
.
32.
Porez
,
M.
,
Boyer
,
F.
, and
Ijspeert
,
A.
,
2014
, “
Improved Lighthill Fish Swimming Model for Bio-Inspired Robots: Modeling, Computational Aspects and Experimental Comparisons
,”
Int. J. Rob. Res.
,
33
(
10
), pp.
1322
1341
.
33.
Triantafyllou
,
M. S.
, and
Triantafyllou
,
G. S.
,
1995
, “
An Efficient Swimming Machine
,”
Sci. Am.
,
272
(
3
), pp.
64
70
.
34.
Fish
,
F. E.
,
1998
, “
Comparative Kinematics and Hydrodynamics of Odontocete Cetaceans: Morphological and Ecological Correlates With Swimming Performance
,”
J. Exp. Biol.
,
201
(
20
), pp.
2867
2877
.
35.
Taylor
,
G. K.
,
Nudds
,
R. L.
, and
Thomas
,
A. L. R.
,
2003
, “
Flying and Swimming Animals Cruise at a Strouhal Number Tuned for High Power Efficiency
,”
Nature
,
425
(
6959
), pp.
707
711
.
36.
Rohr
,
J. J.
, and
Fish
,
F. E.
,
2004
, “
Strouhal Numbers and Optimization of Swimming by Odontocete Cetaceans
,”
J. Exp. Biol.
,
207
(
10
), pp.
1633
1642
.
37.
Borazjani
,
I.
, and
Sotiropoulos
,
F.
,
2009
, “
Numerical Investigation of the Hydrodynamics of Anguilliform Swimming in the Transitional and Inertial Flow Regimes
,”
J. Exp. Biol.
,
212
(
4
), pp.
576
592
.
38.
Borazjani
,
I.
, and
Sotiropoulos
,
F.
,
2008
, “
Numerical Investigation of the Hydrodynamics of Carangiform Swimming in the Transitional and Inertial Flow Regimes
,”
J. Exp. Biol.
,
211
(
10
), pp.
1541
1558
.
39.
Chang
,
X.
,
Zhang
,
L.
, and
He
,
X.
,
2012
, “
Numerical Study of the Thunniform Mode of Fish Swimming With Different Reynolds Number and Caudal Fin Shape
,”
Comput. Fluids
,
68
, pp.
54
70
.
40.
Lindsey
,
C. C.
,
1978
, “Form, Function, and Locomotory Habits in Fish (Volume 7),”
Fish Physiology
,
W.
Hoar
,
D.
Randall
, eds.,
Academic Press
,
New York
, pp.
1
100
.
41.
Tytell
,
E. D.
,
Borazjani
,
I.
,
Sotiropoulos
,
F.
,
Baker
,
T. V.
,
Anderson
,
E. J.
, and
Lauder
,
G. V.
,
2010
, “
Disentangling the Functional Roles of Morphology and Motion in the Swimming of Fish
,”
Integr. Comp. Biol.
,
50
(
6
), pp.
1140
1154
.
42.
Yu
,
J.
, and
Tan
,
M.
,
2015
,
Robot Fish: Design and Control of a Multi-Joint Robotic Fish
,
Springer
,
Berlin/Heidelberg, Germany
.
43.
Li
,
Z.
,
Du
,
R.
, and
Yao
,
Y.
,
2013
, “
Robot Fish With Novel Wire-Driven Continuum Flapping Propulsor
,”
Appl. Mech. Mater.
,
300
, pp.
510
514
.
44.
Li
,
Z.
, and
Du
,
R.
,
2015
,
Robot Fish: Wire-Driven Robot Fish
,
Springer Berlin
,
Heidelberg, Germany
.
45.
Jones
,
B.
,
2006
, “
Kinematics for Multisection Continuum Robots
,”
IEEE Trans. Rob.
,
22
(
1
), pp.
43
55
.
46.
Gillis
,
G.
,
1997
, “
Anguilliform Locomotion in an Elongate Salamander (Siren Intermedia): Effects of Speed on Axial Undulatory Movements
,”
J. Exp. Biol.
,
200
(
4
), pp.
767
784
.
47.
Tytell
,
E. D.
, and
Lauder
,
G. V.
,
2004
, “
The Hydrodynamics of Eel Swimming: I. Wake Structure
,”
J. Exp. Biol.
,
207
(
11
), pp.
1825
1841
.
48.
Donley
,
J. M.
, and
Shadwick
,
R. E.
,
2003
, “
Steady Swimming Muscle Dynamics in the Leopard Shark Triakis Semifasciata
,”
J. Exp. Biol.
,
206
(
7
), pp.
1117
1126
.
49.
Webb
,
P. W.
,
1988
, “
‘Steady’ Swimming Kinematics of Tiger Musky, An Esociform Accelerator, and Rainbow Trout, A Generalist Cruise
,”
J. Exp. Biol.
,
138
(
1
), pp.
51
69
.
50.
Borazjani
,
I.
,
2008
, “
Numerical Simulations of Fluid–Structure Interaction Problems in Biological Flows
,” Ph.D. thesis, University of Minnesota, Minneapolis, MN.
51.
Webb
,
P. W.
,
2002
, “
Kinematics of Plaice, Pleuronectes Platessa, and Cod, Gadus Morhua, Swimming Near the Bottom
,”
J. Exp. Biol.
,
205
(
14
), pp.
2125
2134
.
52.
Knower
,
T.
,
1998
, “
Biomechanics of Thunniform Swimming
,” Ph.D. thesis, University California, San Diego, CA.
53.
Donley
,
J.
,
Sepulveda
,
C. A.
,
Konstantinidis
,
P.
,
Gemballa
,
S.
, and
Shadwick
,
R. E.
,
2004
, “
Convergent Evolution in Mechanical Design of Lamnid Sharks and Tunas
,”
Nature
,
429
, pp.
61
65
.
You do not currently have access to this content.