Abstract

Slender beams serve as typical flexible components to transfer motion, force, and energy in compliant mechanisms. Therefore, the accurate and efficient kinetostatic modeling for the slender beams is highly needed in the synthesis and analysis of compliant mechanisms. Several impressive and great modeling methods have been completed by the pioneering researchers based on the governing equation of slender beams, which can solve the deflection of the beam while the beam-tip loads are known. However, parts of the beam-tip loads are unknown in some scenarios and the traditional governing equation becomes inefficient in these scenarios. The aim of this paper is to propose a novel modeling method for the compliant mechanism, which can solve the large deflection problem without iterative algorithm. In this research, a novel governing equation of slender beams has been established based on Castigliano’s principle and simplified by the differential geometry. In the proposed governing equation, the statically force equilibrium equations and geometric constraint equations between different slender beams can be established in the boundary conditions, therefore the model of compliant mechanisms can be solved directly even if parts of the beam’s tip loads and displacements are unknown. The proposed governing equation provides the deformed shapes and cross-sectional loads of the slender beams, which help the designer to check the mechanical interference and strength in the design process. The numerical examples are presented to demonstrate the feasibility of proposed method.

References

1.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
John Wiley & Sons
,
New York
.
2.
Howell
,
L. L.
,
Magleby
,
S. P.
, and
Olsen
,
B. M.
,
2013
,
Handbook of Compliant Mechanisms
,
John Wiley & Sons
,
New York
.
3.
Lobontiu
,
N.
,
2002
,
Compliant Mechanisms: Design of Flexure Hinges
,
CRC Press
,
Boca Raton, FL
.
4.
Shoup
,
T. E.
, and
McLarnan
,
C. W.
,
1971
, “
On the Use of the Undulating Elastica for the Analysis of Flexible Link Mechanisms
,”
J. Eng. Ind.
,
93
(
1
), pp.
263
267
.
5.
Zhang
,
A.
, and
Chen
,
G.
,
2013
, “
A Comprehensive Elliptic Integral Solution to the Large Deflection Problems of Thin Beams in Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
5
(
2
), p.
021006
.
6.
Holst
,
G. L.
,
Teichert
,
G. H.
, and
Jensen
,
B. D.
,
2011
, “
Modeling and Experiments of Buckling Modes and Deflection of Fixed-Guided Beams in Compliant Mechanisms
,”
ASME J. Mech. Des.
,
133
(
5
), p.
051002
.
7.
Midha
,
A.
,
Howell
,
L. L.
, and
Norton
,
T. W.
,
2000
, “
Limit Positions of Compliant Mechanisms Using the Pseudo-Rigid-Body Model Concept
,”
Mech. Mach. Theory
,
35
(
1
), pp.
99
115
.
8.
Saxena
,
A.
, and
Kramer
,
S. N.
,
1998
, “
A Simple and Accurate Method for Determining Large Deflections in Compliant Mechanisms Subjected to End Forces and Moments
,”
ASME J. Mech. Des.
,
120
(
3
), pp.
392
400
.
9.
Dado
,
M. H.
,
2001
, “
Variable Parametric Pseudo-Rigid-Body Model for Large-Deflection Beams With End Loads
,”
Int. J. Non-Linear Mech.
,
36
(
7
), pp.
1123
1133
.
10.
Kimball
,
C.
, and
Tsai
,
L.-W.
,
2002
, “
Modeling of Flexural Beams Subjected to Arbitrary End Loads
,”
ASME J. Mech. Des.
,
124
(
2
), pp.
223
235
.
11.
Yu
,
Y.-Q.
,
Feng
,
Z.-L.
, and
Xu
,
Q.-P.
,
2012
, “
A Pseudo-Rigid-Body 2R Model of Flexural Beam in Compliant Mechanisms
,”
Mech. Mach. Theory
,
55
, pp.
18
33
.
12.
Su
,
H.-J.
,
2009
, “
A Pseudorigid-Body 3R Model for Determining Large Deflection of Cantilever Beams Subject to Tip Loads
,”
ASME J. Mech. Rob.
,
1
(
2
), p.
021008
.
13.
Chen
,
G.
,
Xiong
,
B.
, and
Huang
,
X.
,
2011
, “
Finding the Optimal Characteristic Parameters for 3R Pseudo-Rigid-Body Model Using an Improved Particle Swarm Optimizer
,”
Precis. Eng.
,
35
(
3
), pp.
505
511
.
14.
Yu
,
Y.-Q.
,
Zhu
,
S.-K.
,
Xu
,
Q.-P.
, and
Zhou
,
P.
,
2016
, “
A Novel Model of Large Deflection Beams With Combined End Loads in Compliant Mechanisms
,”
Precis. Eng.
,
43
, pp.
395
405
.
15.
Yu
,
Y.-Q.
, and
Zhu
,
S.-K.
,
2017
, “
5R Pseudo-Rigid-Body Model for Inflection Beams in Compliant Mechanisms
,”
Mech. Mach. Theory
,
116
, pp.
501
512
.
16.
Zhu
,
S.-K.
, and
Yu
,
Y.-Q.
,
2017
, “
Pseudo-Rigid-Body Model for the Flexural Beam With an Inflection Point in Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
9
(
3
), p.
031005
.
17.
Jin
,
M.
,
Zhu
,
B.
,
Mo
,
J.
,
Yang
,
Z.
,
Zhang
,
X.
, and
Howell
,
L. L.
,
2020
, “
A CPRBM-Based Method for Large-Deflection Analysis of Contact-Aided Compliant Mechanisms Considering Beam-to-Beam Contacts
,”
Mech. Mach. Theory
,
145
, p.
103700
.
18.
Chase Jr
,
R. P.
,
Todd
,
R. H.
,
Howell
,
L. L.
, and
Magleby
,
S. P.
,
2011
, “
A 3-D Chain Algorithm With Pseudo-Rigid-Body Model Elements
,”
Mech. Based Des. Struct. Mach.
,
39
(
1
), pp.
142
156
.
19.
Kalpathy Venkiteswaran
,
V.
, and
Su
,
H.-J.
,
2017
, “
Pseudo-Rigid-Body Models of Initially-Curved and Straight Beams for Designing Compliant Mechanisms
,”
Proceedings of the 41st Mechanisms and Robotics Conference, International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Cleveland, OH
,
Aug. 6–9
, p. V05AT08A006.
20.
Sönmez
,
U.
, and
Tutum
,
C. C.
,
2008
, “
A Compliant Bistable Mechanism Design Incorporating Elastica Buckling Beam Theory and Pseudo-Rigid-Body Model
,”
ASME J. Mech. Des.
,
130
(
4
), p.
042304
.
21.
Bagivalu Prasanna
,
P.
,
Bapat
,
S. G.
,
Midha
,
A.
, and
Lodagala
,
V.
,
2020
, “
A Methodology for Determining Static Mode Shapes of a Compliant Mechanism Using the Pseudo-Rigid-Body Model Concept and the Degrees-of-Freedom Analysis
,”
ASME J. Mech. Rob.
,
12
(
2
), p.
021115
.
22.
Awtar
,
S.
,
Slocum
,
A. H.
, and
Sevincer
,
E.
,
2006
, “
Characteristics of Beam-Based Flexure Modules
,”
ASME J. Mech. Des.
,
129
(
6
), pp.
625
639
.
23.
Hao
,
G.
,
2015
, “
Extended Nonlinear Analytical Models of Compliant Parallelogram Mechanisms: Third-Order Models
,”
Trans. Canad. Soc. Mech. Eng.
,
39
(
1
), pp.
71
83
.
24.
Shusheng
,
B.
,
Hongzhe
,
Z.
, and
Jingjun
,
Y.
,
2009
, “
Modeling of a Cartwheel Flexural Pivot
,”
ASME J. Mech. Des.
,
131
(
6
), p.
061010
.
25.
Chen
,
G.
, and
Ma
,
F.
,
2015
, “
Kinetostatic Modeling of Fully Compliant Bistable Mechanisms Using Timoshenko Beam Constraint Model
,”
ASME J. Mech. Des.
,
137
(
2
), p.
022301
.
26.
Ma
,
F.
, and
Chen
,
G.
,
2015
, “
Modeling Large Planar Deflections of Flexible Beams in Compliant Mechanisms Using Chained Beam-Constraint-Model
,”
ASME J. Mech. Rob.
,
8
(
2
), p.
021018
.
27.
Chen
,
G.
,
Fulei
,
M.
,
Hao
,
G.
, and
Zhu
,
W.
,
2019
, “
Modeling Large Deflections of Initially Curved Beams in Compliant Mechanisms Using Chained Beam-Constraint-Model
,”
ASME J. Mech. Rob.
,
11
(
1
), p.
011002
.
28.
Chen
,
G.
,
Ma
,
F.
,
Bai
,
R.
,
Zhu
,
W.
, and
Howell
,
L. L.
,
2021
, “
An Energy-Based Framework for Nonlinear Kinetostatic Modeling of Compliant Mechanisms Utilizing Beam Flexures
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
6
), p.
064501
.
29.
Radaelli
,
G.
, and
Herder
,
J.
,
2017
, “
A Potential Energy Field (PEF) Approach to the Design of a Compliant Self-Guiding Statically-Balanced Straight-Line Mechanism
,”
Mech. Mach. Theory
,
114
, pp.
141
155
.
30.
Odhner
,
L.
, and
Dollar
,
A. M.
,
2012
, “
The Smooth Curvature Model: An Efficient Representation of Euler–Bernoulli Flexures as Robot Joints
,”
IEEE Trans. Rob.
,
28
(
4
), pp.
761
772
.
31.
Banerjee
,
A.
,
Bhattacharya
,
B.
, and
Mallik
,
A.
,
2008
, “
Large Deflection of Cantilever Beams With Geometric Non-Linearity: Analytical and Numerical Approaches
,”
Int. J. Non-Linear Mech.
,
43
(
5
), pp.
366
376
.
32.
Tolou
,
N.
, and
Herder
,
J.
,
2009
, “
A Seminalytical Approach to Large Deflections in Compliant Beams Under Point Load
,”
Math. Prob. Eng.
,
2009
, p.
910896
.
33.
Wang
,
J.
,
Chen
,
J.-K.
, and
Liao
,
S.
,
2008
, “
An Explicit Solution of the Large Deformation of a Cantilever Beam Under Point Load at the Free Tip
,”
J. Comput. Appl. Math.
,
212
(
2
), pp.
320
330
.
34.
Rao
,
S. S.
,
2017
,
The Finite Element Method in Engineering
,
Butterworth-Heinemann
,
Oxford, UK
.
35.
Bathe
,
K.-J.
, and
Bolourchi
,
S.
,
1979
, “
Large Displacement Analysis of Three-Dimensional Beam Structures
,”
Int. J. Numer. Meth. Eng.
,
14
(
7
), pp.
961
986
.
36.
Simo
,
J.
, and
Vu-Quoc
,
L.
,
1986
, “
A Three-Dimensional Finite-Strain Rod Model. Part II: Computational Aspects
,”
Comput. Meth. Appl. Mech. Eng.
,
58
(
1
), pp.
79
116
.
37.
Saxena
,
A.
, and
Ananthasuresh
,
G. K.
,
1999
, “
Topology Synthesis of Compliant Mechanisms for Nonlinear Force-Deflection and Curved Path Specifications
,”
ASME J. Mech. Des.
,
123
(
1
), pp.
33
42
.
38.
Sigmund
,
O.
,
1997
, “
On the Design of Compliant Mechanisms Using Topology Optimization
,”
Mech. Struct. Mach.
,
25
(
4
), pp.
493
524
.
39.
Midha
,
A.
,
Her
,
I.
, and
Salamon
,
B. A.
,
1992
, “
A Methodology for Compliant Mechanisms Design: Part I – Introduction and Large-Deflection Analysis
,”
Vol. 18th Design Automation Conference: Volume 2 – Geometric Modeling, and Mechanical Systems Analysis of International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Scottsdale, AZ
,
Sept. 13–16
, pp.
29
38
.
40.
Campanile
,
L. F.
, and
Hasse
,
A.
,
2008
, “
A Simple and Effective Solution of the Elastica Problem
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
222
(
12
), pp.
2513
2516
.
41.
Lan
,
C.-C.
,
2008
, “
Analysis of Large-Displacement Compliant Mechanisms Using an Incremental Linearization Approach
,”
Mech. Mach. Theory
,
43
(
5
), pp.
641
658
.
42.
Wu
,
K.
, and
Zheng
,
G.
,
2022
, “
Insight Into Numerical Solutions of Static Large Deflection of General Planar Beams for Compliant Mechanisms
,”
Mech. Mach. Theory
,
172
, p.
104757
.
43.
do Carmo
,
M.
,
2016
,
Differential Geometry of Curves and Surfaces: Revised and Updated Second Edition
,
Dover Publications
,
New York
.
44.
Southwell
,
R. V.
,
1936
, “
Castigliano’s Principle of Minimum Strain-Energy
,”
Proc. R. Soc. London. Ser. A-Math. Phys. Sci.
,
154
(
881
), pp.
4
21
.
45.
Bruhns
,
O. T.
,
2003
,
Advanced Mechanics of Solids
,
Springer
,
New York
.
46.
Wang
,
D.
, and
Wang
,
W.
,
2015
,
Kinematic Differential Geometry and Saddle Synthesis of Linkages
,
John Wiley & Sons
,
Singapore
.
47.
Bridgman
,
P. W.
,
1922
,
Dimensional Analysis
,
Yale University Press
,
New Haven, CT
.
48.
Auzinger
,
W.
,
Karner
,
E.
,
Koch
,
O.
, and
Weinmüller
,
E.
,
2006
, “
Collocation Methods for the Solution of Eigenvalue Problems for Singular Ordinary Differential Equations
,”
Opuscula Math.
,
26
(
2
), pp.
229
241
.
You do not currently have access to this content.