Abstract

The present analysis addresses the generation of regular polygonal paths with any number of sides, odd or even, by use of special rotors revolving with uniquely prescribed motions inside fixed polygonal holes of guidance, which may be coincident or similar to the paths to be traced. The whole rotation motion of the rotor is considered composed of a sequence of Cardan motions so that the active profile of contact is formed by a polycentric sequence of circular arcs. It is shown and proved that the guidance polygon and the target polygon may coincide in the hypothesis of an odd number n of sides, whereas the guidance profile must be larger than the one to be generated for n even, in which case two equal concentric polygons rotated of π/n between each other may be simultaneously generated by two particular points of the rotors. These devices are very useful to drill blind polygonal holes, providing the rotors of proper cutting tools and driving them by constant-speed motors through homokinetic joints.

References

1.
Euler
,
L.
,
1778
, “
De Curvis Triangularibus
,”
Acta Acad. Sci. Petropolitanea, Euler Archives, All Works
,
513
(
2
), pp.
1
30
. https://scholarlycommons.pacific.edu/euler-works
2.
Reuleaux
,
R.
,
1875
,
Theoretische Kinematik, Grundzüge Einer Theorie des Mascinewesens
,
I
Teil
, ed.,
F. Vieweg und Sohn
,
Braunschweig, Germany
.
3.
Fujiwara
,
M.
,
1919
, “
Über die Innen-Umdrehbare Kurve Eines Vieleckes
,”
Sci. Rep. Ser.
,
1
(
8
), pp.
221
246
.
4.
Beyer
,
R.
,
1931
,
Technische Kinematik
,
Barth
,
Leipzig, Germany
.
5.
Goldberg
,
M.
,
1948
, “
Circular Arc Rotors in Regular Polygons
,”
Am. Math. Mon.
,
55
(
7
), pp.
393
402
.
6.
Goldberg
,
M.
,
1957
, “
Trammel Rotors in Regular Polygons
,”
Am. Math. Mon.
,
64
(
7
), pp.
71
78
.
7.
Goldberg
,
M.
,
1960
, “
Rotors in Polygons and Polyhedra
,”
Math. Comput.
,
14
(
71
), pp.
229
239
.
8.
Cox
,
B.
, and
Wagon
,
S.
,
2009
, “
Mechanical Circle Squaring
,”
Coll. Math. J.
,
4
(
4
), pp.
238
247
.
9.
Cox
,
B.
, and
Wagon
,
S.
,
2012
, “
Drilling for Polygons
,”
Am. Math. Mon.
,
119
(
4
), pp.
300
312
.
10.
Bryant
,
J.
, and
Sangwin
,
C.
,
2008
,
How Round Is Your Circle?
,
Princeton University Press
,
Princeton, NJ.
11.
Wagon
,
S.
,
2011
, “
Drilling a Square Hole
,” The Wolfram Demonstration Project, http://demonstrations.wolfram.com/DrillingASquareHole.
12.
Cox
,
B.
, and
Wagon
,
S.
,
2011
, “
Drilling a Hexagonal Hole
,” The Wolfram Demonstrations Project, http://demonstrations.wolfram.com/DrillingAHexagonalHole.
13.
John
,
T.
,
Ronald
,
P.
,
Sachin
,
P.
,
Vasyan
,
K. S.
,
Bezaleel
,
S.
, and
Anto
,
Z.
,
2016
, “
Design and Fabrication of Square Hole Drilling Machine
,”
Int. J. Eng. Res. Appl.
,
6
(
11
), pp.
75
79
.
14.
Shajahan
,
S.
,
Diwakar Reddy
,
V.
, and
Venu Gopal Naidu
,
M.
,
2021
, “
Design and Analysis of Precession Polygon Hole Drilling Tool
,”
Sci. Technol. Dev.
,
10
(
11
), pp.
112
120
.
15.
Tai
,
K.
,
Guang
,
Y. C.
, and
Tapabrata
,
R.
,
2002
, “
Design Synthesis of Path Generating Compliant Mechanisms by Evolutionary Optimization of Topology and Shape
,”
ASME J. Mech. Des.
,
124
(
3
), pp.
492
500
.
16.
Lin
,
W. Y.
,
2015
, “
Optimum Synthesis of Planar Mechanisms for Path Generation Based on a Combined Fourier Descriptor
,”
ASME J. Mech. Rob.
,
7
(
4
), p.
041023
.
17.
Zhao
,
K.
, and
Schmiedeler
,
J. P.
,
2016
, “
Using Rigid Body Mechanism Topologies to Design Path Generating Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
8
(
1
), p.
014506
.
18.
Figliolini
,
G.
,
Conte
,
M.
, and
Rea
,
P.
,
2012
, “
Algebraic Algorithm for the Kinematic Analysis of Slider-Crank/Rocker Mechanisms
,”
ASME J. Mech. Rob.
,
4
(
1
), p.
011003
.
19.
Shiwalkar
,
P. B.
,
Moghe
,
S. D.
, and
Modak
,
J. P.
,
2022
, “
Novel Methodology for Inflection Circle-Based Synthesis of Crank Rocker Mechanism
,”
ASME J. Mech. Rob.
,
14
(
5
), p.
055001
.
20.
Bonandrini
,
G.
,
Mimmi
,
G.
, and
Rottenbacher
,
C.
,
2009
, “
Theoretical Analysis of Internal Epitrochoidal and Hypotrochoidal Machines
,”
Proc. Inst. Mech. Eng. part C
,
223
(
6
), pp.
1469
1480
.
21.
Figliolini
,
G.
,
Rea
,
P.
, and
Grande
,
S.
,
2016
, “
Kinematical Synthesis of Rotary Machines Generated by Regular Curve Polygons
,”
ASME J. Mech. Des.
,
138
(
2
), p.
022301
.
22.
Zhonghe
,
Y.
, and
Smith
,
M. R.
,
2002
, “
Synthesis of Constant-Breadth Cam Mechanisms
,”
Mech. Mach. Theory
,
37
(
9
), pp.
941
953
.
23.
Hain
,
K.
,
1967
,
Applied Kinematics
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.