Abstract

Mobility and manipulation are often considered separately, with independent degrees-of-freedom (DOF) for each. However, here we show that using the legs for both walking and grasping increases the versatility of both tasks. Our robot has four DOF: drive and lift for left and right pairs of legs. The legs use a reduced actuation Klann mechanism. The lift DOF rotates the entire trajectory of the legs, which enables gait modulation, climbing, and grasping. This demonstrates the feasibility of a novel operational concept: a robot that can approach, climb onto, and securely grasp an object that can then be lifted via a load-bearing tether. Specifically, we show the kinematics to enable small robots to climb onto rectangular objects up to 67% robot height and grasp objects between 43% and 72% of the robot’s length. With these kinematics, a robot can be scaled for specific terrains and object sizes, with potential application in construction, search and rescue, and object retrieval.

References

1.
Hutter
,
M.
,
Gehring
,
C.
,
Jud
,
D.
,
Lauber
,
A.
,
Bellicoso
,
C. D.
,
Tsounis
,
V.
, and
Hwangbo
,
J.
,
2016
, “
Anymal - A Highly Mobile and Dynamic Quadrupedal Robot
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Daejeon, South Korea
,
October
, pp.
38
44
.
2.
Bjelonic
,
M.
,
Kottege
,
N.
,
Homberger
,
T.
,
Borges
,
P.
,
Beckerle
,
P.
, and
Chli
,
M.
,
2018
, “
Weaver: Hexapod Robot for Autonomous Navigation on Unstructured Terrain
,”
J. Field Rob.
,
35
(
7
), pp.
1063
1079
.
3.
Raibert
,
M.
,
Blankespoor
,
K.
,
Nelson
,
G.
, and
Playter
,
R.
,
2008
, “
Bigdog, the Rough-Terrain Quadruped Robot
,”
IFAC Proc. Vol.
,
41
(
2
), pp.
10822
10825
.
4.
Nelson
,
G.
,
Saunders
,
A.
, and
Playter
,
R.
,
2018
, “
The Petman and Atlas Robots At Boston Dynamics
,”
Humanoid Rob.: A Reference
,
169
, p.
186
.
5.
Huang
,
K.-J.
,
Chen
,
S.-C.
,
Komsuoglu
,
H.
,
Lopes
,
G.
,
Clark
,
J.
, and
Lin
,
P.-C.
,
2015
, “
Design and Performance Evaluation of a Bio-Inspired and Single-Motor-Driven Hexapod Robot With Dynamical Gaits
,”
ASME J. Mech. Rob.
,
7
(
3
), p.
031017
.
6.
Hussain
,
I.
,
Renda
,
F.
,
Iqbal
,
Z.
,
Malvezzi
,
M.
,
Salvietti
,
G.
,
Seneviratne
,
L.
,
Gan
,
D.
, and
Prattichizzo
,
D.
,
2018
, “
Modeling and Prototyping of An Underactuated Gripper Exploiting Joint Compliance and Modularity
,”
IEEE Rob. Autom. Lett.
,
3
(
4
), pp.
2854
2861
.
7.
Zimmermann
,
S.
,
Poranne
,
R.
, and
Coros
,
S.
,
2021
, “
Go Fetch! - Dynamic Grasps Using Boston Dynamics Spot With External Robotic Arm
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Xi'an, China
,
May
, pp.
4488
4494
.
8.
Giftthaler
,
M.
,
Farshidian
,
F.
,
Sandy
,
T.
,
Stadelmann
,
L.
, and
Buchli
,
J.
,
2017
, “
Efficient Kinematic Planning for Mobile Manipulators With Non-Holonomic Constraints Using Optimal Control
,”
2017 IEEE International Conference on Robotics and Automation (ICRA)
,
Singapore
,
May
.
9.
Heins
,
A.
,
Jakob
,
M.
, and
Schoellig
,
A. P.
,
2021
, “
Mobile Manipulation in Unknown Environments With Differential Inverse Kinematics Control
,”
Conference on Robots and Vision (CRV)
,
Burnaby, BC, Canada
,
May
, pp.
64
71
.
10.
Murphy
,
R. R.
,
2017
,
Disaster Robotics
,
MIT Press
,
Cambridge, MA
.
11.
Filardo
,
P.
,
2021
,
Pliant Energy Systems/NACROM – 2020 Underwater Minerals Conference
https://www.youtube.com/watch?v=2dUwDagCLDM
12.
Dong
,
W.
,
Ding
,
Y.
,
Yang
,
L.
,
Sheng
,
X.
, and
Zhu
,
X.
,
2019
, “
An Efficient Approach for Stability Analysis and Parameter Tuning in Delayed Feedback Control of a Flying Robot Carrying a Suspended Load
,”
ASME J. Dyn. Syst. Meas. Contr.
,
141
(
8
), p.
081015
.
13.
IEEE Spectrum
,
2015
,
A Compilation of Robots Falling Down at the DARPA Robotics Challenge
. https://www.youtube.com/watch?v=g0TaYhjpOfo
14.
Banerjee
,
N.
,
Long
,
X.
,
Du
,
R.
,
Polido
,
F.
,
Feng
,
S.
,
Atkeson
,
C. G.
,
Gennert
,
M.
, and
Padir
,
T.
,
2015
, “
Human-Supervised Control of the Atlas Humanoid Robot for Traversing Doors
,”
IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids)
,
Seoul, South Korea
,
November
, pp.
722
729
.
15.
Kang
,
P.
,
Han
,
L.
,
Xu
,
W.
,
Wang
,
P.
, and
Yang
,
G.
,
2019
, “
Mobile Robot Manipulation System With a Reconfigurable Robotic Arm: Design and Experiment
,”
IEEE International Conference on Robotics and Biomimetics (ROBIO)
,
Dali, China
,
December
, pp.
2378
2383
.
16.
Liu
,
J.
,
Iacoponi
,
S.
,
Laschi
,
C.
,
Wen
,
L.
, and
Calisti
,
M.
,
2020
, “
Underwater Mobile Manipulation: A Soft Arm on a Benthic Legged Robot
,”
IEEE Rob. Autom. Mag.
,
27
(
4
), pp.
12
26
.
17.
Yin
,
A.
,
Lin
,
H.-C.
,
Thelen
,
J.
,
Mahner
,
B.
, and
Ranzani
,
T.
,
2019
, “
Combining Locomotion and Grasping Functionalities in Soft Robots
,”
Adv. Intell. Syst.
,
1
(
8
), p.
1900089
.
18.
Venkiteswaran
,
V. K.
,
Tan
,
D. K.
, and
Misra
,
S.
,
2020
, “
Tandem Actuation of Legged Locomotion and Grasping Manipulation in Soft Robots Using Magnetic Fields
,”
Extreme Mech. Lett.
,
41
, p.
101023
.
19.
Rimon
,
E.
, and
Burdick
,
J.
,
1996
, “
On Force and Form Closure for Multiple Finger Grasps
,”
Proceedings of IEEE International Conference on Robotics and Automation
,
Minneapolis, MN
,
April
, Vol. 2, pp.
1795
1800
.
20.
Wile
,
G. D.
,
Daltorio
,
K. A.
,
Diller
,
E. D.
,
Palmer
,
L. R.
,
Gorb
,
S. N.
,
Ritzmann
,
R. E.
, and
Quinn
,
R. D.
,
2008
, “
Screenbot: Walking Inverted Using Distributed Inward Gripping
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Nice, France
,
September
, pp.
1513
1518
.
21.
Miller
,
T. G.
,
Bretl
,
T. W.
, and
Rock
,
S.
,
2006
, “
Control of a Climbing Robot Using Real-Time Convex Optimization
,”
IFAC Proc. Vol.
,
39
(
16
), pp.
409
414
.
22.
Graf
,
N. M.
,
Behr
,
A. M.
, and
Daltorio
,
K. A.
,
2021
, “
Dactyls and Inward Gripping Stance for Amphibious Crab-Like Robots on Sand
,”
Bioinspir. Biomim.
,
16
(
2
), p.
026021
.
23.
Yuan
,
S.
,
Epps
,
A. D.
,
Nowak
,
J. B.
, and
Salisbury
,
J. K.
,
2020
, “
Design of a Roller-Based Dexterous Hand for Object Grasping and Within-Hand Manipulation
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Paris, France
,
May
.
24.
Wei
,
Y.
,
Chen
,
Y.
,
Ren
,
T.
,
Chen
,
Q.
,
Yan
,
C.
,
Yang
,
Y.
, and
Li
,
Y.
,
2016
, “
A Novel, Variable Stiffness Robotic Gripper Based on Integrated Soft Actuating and Particle Jamming
,”
Soft Rob.
,
3
(
3
), pp.
134
143
.
25.
Feix
,
T.
,
Romero
,
J.
,
Schmiedmayer
,
H.-B.
,
Dollar
,
A. M.
, and
Kragic
,
D.
,
2016
, “
The Grasp Taxonomy of Human Grasp Types
,”
IEEE Trans. Human-Mach. Syst.
,
46
(
1
), pp.
66
77
.
26.
Wattanasiri
,
P.
,
Tangpornprasert
,
P.
, and
Virulsri
,
C.
,
2018
, “
Design of Multi-Grip Patterns Prosthetic Hand With Single Actuator
,”
IEEE. Trans. Neural. Syst. Rehabil. Eng.
,
23
(
6
), pp.
1188
1198
.
27.
Tawk
,
C.
,
Gillett
,
A.
,
Spinks
,
G. M.
, and
Alici
,
G.
,
2019
, “
A 3D-Printed Omni-Purpose Soft Gripper
,”
IEEE Trans. Rob.
,
35
(
5
), pp.
1268
1275
.
28.
Xiong
,
Y.
,
Peng
,
C.
,
Grimstad
,
L.
,
From
,
P. J.
, and
Isler
,
V.
,
2019
, “
Development and Field Evaluation of a Strawberry Harvesting Robot With a Cable-Driven Gripper
,”
Comput. Electron. Agricul.
,
157
, pp.
392
402
.
29.
Allen
,
T.
,
Quinn
,
R.
,
Bachmann
,
R.
, and
Ritzmann
,
R.
,
2003
, “
Abstracted Biological Principles Applied With Reduced Actuation Improve Mobility of Legged Vehicles
,”
Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003)
,
Las Vegas, NV
,
October
, Vol. 2, pp.
1370
1375
.
30.
Campbell
,
D.
, and
Buehler
,
M.
,
2003
, “
Stair Descent in the Simple Hexapod ‘RHex’
,”
2003 IEEE International Conference on Robotics and Automation
,
Taipei, Taiwan
,
September
, Vol. 1, pp.
1380
1385
.
31.
Wei
,
T.
,
Quinn
,
R.
, and
Ritzmann
,
R.
,
2005
, “
Robot Designed for Walking and Climbing Based on Abstracted Cockroach Locomotion Mechanisms
,”
Proceedings, 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics.
,
Monterey, CA
,
July
, pp.
1471
1476
.
32.
theo jansenl
,
2021
,
Strandbeest Evolution 2020
. https://www.youtube.com/watch?v=9_gaK2KmVcA
33.
Yul Shin
,
S.
,
Deshpande
,
A. D.
, and
Sulzer
,
J.
,
2018
, “
Design of a Single Degree-of-Freedom, Adaptable Electromechanical Gait Trainer for People With Neurological Injury
,”
ASME J. Mech. Rob.
,
10
(
4
), p.
044503
.
34.
Fedorov
,
D.
, and
Birglen
,
L.
,
2017
, “
Design of a Self-Adaptive Robotic Leg Using a Triggered Compliant Element
,”
IEEE Rob. Autom. Lett.
,
2
(
3
), pp.
1444
1451
.
35.
Sheba
,
J. K.
,
Martínez-García
,
E.
,
Elara
,
M. R.
, and
Tan-Phuc
,
L.
,
2015
, “
Design and Evaluation of Reconfigurable Klann Mechanism Based Four Legged Walking Robot
,”
2015 10th International Conference on Information, Communications and Signal Processing (ICICS)
,
Singapore
,
December
, pp.
1
5
.
36.
Kulandaidaasan Sheba
,
J.
,
Elara
,
M. R.
,
Martínez-García
,
E.
, and
Tan-Phuc
,
L.
,
2016
, “
Trajectory Generation and Stability Analysis for Reconfigurable Klann Mechanism Based Walking Robot
,”
Robotics
,
5
(
3
), p.
13
.
37.
Kim
,
H.-G.
,
Jung
,
M.-S.
,
Shin
,
J.-K.
, and
Seo
,
T.
,
2014
, “
Optimal Design of Klann-Linkage Based Walking Mechanism for Amphibious Locomotion on Water and Ground
,”
J. Inst. Control, Rob. Syst.
,
20
(
9
), pp.
936
941
.
38.
Kavlak
,
K.
, and
Kartal
,
I. A.
,
2021
, “
Kinematic Analysis of Mobile Robot With Klann Walking Mechanism
,”
2021 3rd International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA)
,
Ankara, Turkey
,
June
, pp.
1
6
.
39.
Kamimura
,
T.
,
Aoi
,
S.
,
Tsuchiya
,
K.
, and
Matsuno
,
F.
,
2018
, “
Body Flexibility Effects on Foot Loading in Quadruped Bounding Based on a Simple Analytical Model
,”
IEEE Rob. Autom. Lett.
,
3
(
4
), pp.
2830
2837
.
40.
Seo
,
T.
, and
Sitti
,
M.
,
2013
, “
Tank-Like Module-Based Climbing Robot Using Passive Compliant Joints
,”
IEEE/ASME Trans. Mechatron.
,
18
(
1
), pp.
397
408
.
41.
Boxerbaum
,
A. S.
,
Oro
,
J.
,
Peterson
,
G.
, and
Quinn
,
R. D.
,
2008
, “
The Latest Generation Whegscha™ Robot Features a Passive-Compliant Body Joint
,”
2008 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Nice, France
,
September
, pp.
1636
1641
.
42.
Wile
,
G. D.
,
Daltorio
,
K. A.
,
Palmer
,
L. R.
,
Witushynsky
,
T. C.
,
Southard
,
L.
,
Ahmad
,
M. R.
, and
Malek
,
A. A.
,
2008
, “
Making Orthogonal Transitions With Climbing Mini-Whegs™
,”
2008 IEEE International Conference on Robotics and Automation
,
Pasadena, CA
,
May
, pp.
1775
1776
.
43.
Wei
,
T.
,
Quinn
,
R.
, and
Ritzmann
,
R.
,
2005
, “
A Clawar That Benefits From Abstracted Cockroach Locomotion Principles
,”
Climbing and Walking Robots
,
Berlin/Heidelberg
.
44.
Bledt
,
G.
,
Powell
,
M. J.
,
Katz
,
B.
,
Di Carlo
,
J.
,
Wensing
,
P. M.
, and
Kim
,
S.
,
2018
, “
Mit Cheetah 3: Design and Control of a Robust, Dynamic Quadruped Robot
,”
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Madrid, Spain
,
October
, pp.
2245
2252
.
45.
Grezmak
,
J.
,
Graf
,
N.
,
Behr
,
A.
, and
Daltorio
,
K.
,
2021
, “
Terrain Classification Based on Sensed Leg Compliance for Amphibious Crab Robot
,”
IEEE Sensors J.
,
21
(
20
), pp.
23308
23316
.
46.
Wu
,
J.
,
Yang
,
H.
,
Li
,
R.
,
Ruan
,
Q.
, and
Yan
,
S.
,
2021
, “
Design and Analysis of a Novel Octopod Platform With a Reconfigurable Trunk
,”
Mech. Mach. Theory.
,
156
, p.
104134
.
47.
Wu
,
J.
,
Yao
,
Y.-a.
,
Li
,
Y.
,
Wang
,
S.
, and
Ruan
,
Q.
,
2019
, “
Design and Analysis of a Sixteen-Legged Vehicle With Reconfigurable Close-Chain Leg Mechanisms
,”
ASME J. Mech. Rob.
,
11
(
5
), p.
055001
.
48.
Daltorio
,
K. A.
,
Witushynsky
,
T. C.
,
Wile
,
G. D.
,
Palmer
,
L. R.
,
Ab Malek
,
A.
,
Ahmad
,
M. R.
,
Southard
,
L.
,
Gorb
,
S. N.
,
Ritzmann
,
R. E.
, and
Quinn
,
R. D.
,
2008
, “
A Body Joint Improves Vertical to Horizontal Transitions of A Wall-Climbing Robot
,”
2008 IEEE International Conference on Robotics and Automation
,
Pasadena, CA
,
May
, pp.
3046
3051
.
50.
Kim
,
S.
, and
Wensing
,
P. M.
,
2017
, “
Design of Dynamic Legged Robots
,”
Found. Trends Rob.
,
5
(
2
), pp.
117
190
.
You do not currently have access to this content.