Abstract

Prior research on robotic hands predominantly focused on high degrees-of-freedom of fully actuated fingers to replicate a natural human hand or on creative designs of underactuated fingers to make a self-adaptive motion. However, in most cases, fully actuated fingers encounter difficulty in grasping unstructured objects, while underactuated fingers experience problems in performing precise grasping motions. To deal with any possible scenarios, this study presents a novel design of an anthropomorphic robotic finger that combines both advantages—fully actuated and self-adaptive (FASA) modes—at once. Actuated by tendons, the FASA finger can grasp objects adaptively and achieve accurate angle positioning with the same mechanical design. Based on the kinetostatic analysis, the guideline for selecting a torsion spring is proposed to fulfill the functions of the FASA finger and attain the optimal design of torsional stiffness, which manifests itself in a series of tests on different configurations of torsion spring. Likewise, the kinematic analysis for the fully actuated mode is given proof that two joints can move independently by controlling two motors. Ultimately, experimental results reflected the capability of the FASA finger to perform not only independent precision angle motion but also self-adaptive grasping motion without any change in mechanical structure.

References

1.
Belter
,
J. T.
,
Segil
,
J. L.
,
Dollar
,
A. M.
, and
Weir
,
R. F.
,
2013
, “
Mechanical Design and Performance Specifications of Anthropomorphic Prosthetic Hands: A Review
,”
J. Rehabil. Res. Dev.
,
50
(
5
), pp.
599
.
2.
Gaiser
,
I. N.
,
Pylatiuk
,
C.
,
Schulz
,
S.
,
Kargov
,
A.
,
Oberle
,
R.
, and
Werner
,
T.
,
2009
, “
The FLUIDHAND III: A Multifunctional Prosthetic Hand
,”
J. Prosthet. Orthot.
,
21
(
2
), pp.
91
96
.
3.
Xu
,
Z.
,
Kumar
,
V.
, and
Todorov
,
E.
,
2013
, “
A Low-Cost and Modular, 20-DOF Anthropomorphic Robotic Hand: Design, Actuation and Modeling
,”
Proceedings of the 2013 13th IEEE-RAS International Conference on Humanoid Robots (Humanoids)
,
Atlanta, GA
,
Oct. 15–17
, IEEE, pp.
368
375
.
4.
Quigley
,
M.
,
Salisbury
,
C.
,
Ng
,
A. Y.
, and
Salisbury
,
J. K.
,
2014
, “
Mechatronic Design of an Integrated Robotic Hand
,”
Int. J. Robot. Res.
,
33
(
5
), pp.
706
720
.
5.
Lovchik
,
C.
, and
Diftler
,
M. A.
,
1999
, “
The Robonaut Hand: A Dexterous Robot Hand for Space
,”
Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No. 99CH36288C)
,
Detroit, MI
,
May 10–15
, IEEE, pp.
907
912
.
8.
Cheng
,
M.
,
Fan
,
S.
,
Yang
,
D.
, and
Jiang
,
L.
,
2020
, “
Design of an Underactuated Finger Based on a Novel Nine-Bar Mechanism
,”
ASME J. Mech. Rob.
,
12
(
6
), p.
065001
.
9.
Wei
,
Y.
, and
Zhang
,
W.
,
2018
, “
Development of A Hybrid Self-Adaptive Robot Finger for Parallel and Coupled Switching
,”
Proceedings of the 2018 3rd International Conference on Advanced Robotics and Mechatronics (ICARM)
,
Singapore
,
July 18–20
, IEEE, pp.
738
743
.
10.
Laliberte
,
T.
,
Birglen
,
L.
, and
Gosselin
,
C.
,
2002
, “
Underactuation in Robotic Grasping Hands
,”
Mach. Intell. Robot. Control
,
4
(
3
), pp.
1
11
.
11.
Estay
,
D.
,
Basoalto
,
A.
,
Ardila
,
J.
,
Cerda
,
M.
, and
Barraza
,
R.
,
2021
, “
Development and Implementation of an Anthropomorphic Underactuated Prosthesis With Adaptive Grip
,”
Machines
,
9
(
10
), p.
209
.
12.
Nikafrooz
,
N.
, and
Leonessa
,
A.
,
2021
, “
A Single-Actuated, Cable-Driven, and Self-Contained Robotic Hand Designed for Adaptive Grasps
,”
Robotics
,
10
(
4
), p.
109
.
13.
Mohammadi
,
A.
,
Lavranos
,
J.
,
Zhou
,
H.
,
Mutlu
,
R.
,
Alici
,
G.
,
Tan
,
Y.
,
Choong
,
P.
, and
Oetomo
,
D.
,
2020
, “
A Practical 3D-Printed Soft Robotic Prosthetic Hand With Multi-Articulating Capabilities
,”
PLoS One
,
15
(
5
), p.
e0232766
.
14.
Bishay
,
P. L.
,
Fontana
,
J.
,
Raquipiso
,
B.
,
Rodriguez
,
J.
,
Borreta
,
M. J.
,
Enos
,
B.
,
Gay
,
T.
, and
Mauricio
,
K.
,
2020
, “
Development of a Biomimetic Transradial Prosthetic arm With Shape Memory Alloy Muscle Wires
,”
Eng. Res. Express
,
2
(
3
), p.
035041
.
15.
Vincent Hand
, www.vincentsystems.de/?lang=en, Accessed May 5, 2022.
16.
17.
Deshpande
,
A. D.
,
Xu
,
Z.
,
Weghe
,
M. J. V.
,
Brown
,
B. H.
,
Ko
,
J.
,
Chang
,
L. Y.
,
Wilkinson
,
D. D.
,
Bidic
,
S. M.
, and
Matsuoka
,
Y.
,
2011
, “
Mechanisms of the Anatomically Correct Testbed Hand
,”
IEEE/ASME Trans. Mechatron.
,
18
(
1
), pp.
238
250
.
18.
Dalley
,
S. A.
,
Wiste
,
T. E.
,
Withrow
,
T. J.
, and
Goldfarb
,
M.
,
2009
, “
Design of a Multifunctional Anthropomorphic Prosthetic Hand With Extrinsic Actuation
,”
IEEE/ASME Trans. Mechatron.
,
14
(
6
), pp.
699
706
.
19.
Xu
,
Z.
, and
Todorov
,
E.
,
2016
, “
Design of a Highly Biomimetic Anthropomorphic Robotic Hand Towards Artificial Limb Regeneration
,”
Proceedings of 2016 IEEE International Conference on Robotics and Automation (ICRA)
,
Stockholm, Sweden
,
May 16–21
, IEEE, pp.
3485
3492
.
20.
Xiong
,
C.-H.
,
Chen
,
W.-R.
,
Sun
,
B.-Y.
,
Liu
,
M.-J.
,
Yue
,
S.-G.
, and
Chen
,
W.-B.
,
2016
, “
Design and Implementation of an Anthropomorphic Hand for Replicating Human Grasping Functions
,”
IEEE Trans. Robot.
,
32
(
3
), pp.
652
671
.
21.
Jacobsen
,
S.
,
Iversen
,
E.
,
Knutti
,
D.
,
Johnson
,
R.
, and
Biggers
,
K.
,
1986
, “
Design of the Utah/MIT Dextrous Hand
,”
Proceedings of 1986 IEEE International Conference on Robotics and Automation
,
San Francisco, CA
,
Apr. 7–10
, IEEE, pp.
1520
1532
.
22.
Kawasaki
,
H.
,
Komatsu
,
T.
, and
Uchiyama
,
K.
,
2002
, “
Dexterous Anthropomorphic Robot Hand With Distributed Tactile Sensor: Gifu Hand II
,”
IEEE/ASME Trans. Mechatron.
,
7
(
3
), pp.
296
303
.
23.
Butterfaß
,
J.
,
Grebenstein
,
M.
,
Liu
,
H.
, and
Hirzinger
,
G.
,
2001
, “
DLR-Hand II: Next Generation of a Dextrous Robot Hand
,”
Proceedings of 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No. 01CH37164)
,
Seoul, South Korea
,
May 21–26
, IEEE, pp.
109
114
.
24.
Ueda
,
J.
,
Ishida
,
Y.
,
Kondo
,
M.
, and
Ogasawara
,
T.
,
2005
, “
Development of the NAIST-Hand with Vision-Based Tactile Fingertip Sensor
,”
Proceedings of the 2005 IEEE International Conference on Robotics and Automation
,
Barcelona, Spain
,
Apr. 18–22
, IEEE, pp.
2332
2337
.
25.
Melchiorri
,
C.
,
Palli
,
G.
,
Berselli
,
G.
, and
Vassura
,
G.
,
2013
, “
Development of the UB Hand iv: Overview of Design Solutions and Enabling Technologies
,”
IEEE Robot. Autom. Mag.
,
20
(
3
), pp.
72
81
.
26.
Yang
,
D.-p.
,
Zhao
,
J.-d.
,
Gu
,
Y.-k.
,
Wang
,
X.-q.
,
Li
,
N.
,
Jiang
,
L.
,
Liu
,
H.
,
Huang
,
H.
, and
Zhao
,
D.-w.
,
2009
, “
An Anthropomorphic Robot Hand Developed Based on Underactuated Mechanism and Controlled by EMG Signals
,”
J. Bionic Eng.
,
6
(
3
), pp.
255
263
.
27.
Che
,
D.
, and
Zhang
,
W.
,
2011
, “
GCUA Humanoid Robotic Hand With Tendon Mechanisms and Its Upper Limb
,”
Int. J. Soc. Robot.
,
3
(
4
), pp.
395
404
.
28.
Dollar
,
A. M.
, and
Howe
,
R. D.
,
2010
, “
The Highly Adaptive SDM Hand: Design and Performance Evaluation
,”
Int. J. Robot. Res.
,
29
(
5
), pp.
585
597
.
29.
Ma
,
R. R.
,
Odhner
,
L. U.
, and
Dollar
,
A. M.
,
2013
, “
A Modular, Open-Source 3D Printed Underactuated Hand
,”
Proceedings of 2013 IEEE International Conference on Robotics and Automation
,
Karlsruhe, Germany
,
May 6–10
, IEEE, pp.
2737
2743
..
30.
Zhang
,
W.
,
Che
,
D.
,
Liu
,
H.
,
Ma
,
X.
,
Chen
,
Q.
,
Du
,
D.
, and
Sun
,
Z.
,
2009
, “
Super Under-Actuated Multi-Fingered Mechanical Hand With Modular Self-Adaptive Gear-Rack Mechanism
,”
Ind. Robot
,
36
(
3
), pp.
255
262
.
31.
Zeng
,
X.
, and
Su
,
H.-J.
,
2022
, “
A High Performance Pneumatically Actuated Soft Gripper Based on Layer Jamming
,”
ASME J. Mech. Rob.
,
15
(
1
), p.
014501
.
32.
Xiao
,
W.
,
Hu
,
D.
,
Chen
,
W.
,
Yang
,
G.
, and
Han
,
X.
,
2021
, “
A New Type of Soft Pneumatic Torsional Actuator With Helical Chambers for Flexible Machines
,”
ASME J. Mech. Rob.
,
13
(
1
), p.
011003
.
33.
Milojević
,
A.
,
Linß
,
S.
,
Ćojbašić
,
Ž
, and
Handroos
,
H.
,
2021
, “
A Novel Simple, Adaptive, and Versatile Soft-Robotic Compliant Two-Finger Gripper With an Inherently Gentle Touch
,”
ASME J. Mech. Rob.
,
13
(
1
), p.
011015
.
34.
Lotfiani
,
A.
,
Zhao
,
H.
,
Shao
,
Z.
, and
Yi
,
X.
,
2020
, “
Torsional Stiffness Improvement of a Soft Pneumatic Finger Using Embedded Skeleton
,”
ASME J. Mech. Rob.
,
12
(
1
), p.
011016
.
35.
Ashwin
,
K.
, and
Ghosal
,
A.
,
2019
, “
A Soft-Robotic End-Effector for Independently Actuating Endoscopic Catheters
,”
ASME J. Mech. Rob.
,
11
(
6
), p.
061004
.
36.
Manti
,
M.
,
Hassan
,
T.
,
Passetti
,
G.
,
D'Elia
,
N.
,
Laschi
,
C.
, and
Cianchetti
,
M.
,
2015
, “
A Bioinspired Soft Robotic Gripper for Adaptable and Effective Grasping
,”
Soft Robot.
,
2
(
3
), pp.
107
116
.
37.
Galloway
,
K. C.
,
Becker
,
K. P.
,
Phillips
,
B.
,
Kirby
,
J.
,
Licht
,
S.
,
Tchernov
,
D.
,
Wood
,
R. J.
, and
Gruber
,
D. F.
,
2016
, “
Soft Robotic Grippers for Biological Sampling on Deep Reefs
,”
Soft Robot.
,
3
(
1
), pp.
23
33
.
38.
Homberg
,
B. S.
,
Katzschmann
,
R. K.
,
Dogar
,
M. R.
, and
Rus
,
D.
,
2015
, “
Haptic Identification of Objects Using a Modular Soft Robotic Gripper
,”
Proceedings of 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Hamburg, Germany
,
Sept. 28–Oct. 2
, IEEE, pp.
1698
1705
.
39.
Birglen
,
L.
,
2010
, “
From Flapping Wings to Underactuated Fingers and Beyond: a Broad Look to Self-Adaptive Mechanisms
,”
Mech. Sci.
,
1
(
1
), pp.
5
12
.
40.
Jiang
,
L.
,
Liu
,
Y.
,
Yang
,
D.
, and
Liu
,
H.
,
2018
, “
A Synthetic Framework for Evaluating and Designing an Anthropomorphic Prosthetic Hand
,”
J. Bionic Eng
,
15
(
1
), pp.
69
82
.
41.
Lee
,
J.
, and
Kunii
,
T. L.
,
1995
, “
Model-Based Analysis of Hand Posture
,”
IEEE Comp. Graph. Appl.
,
15
(
5
), pp.
77
86
.
42.
Birglen
,
L.
, and
Gosselin
,
C. M.
,
2004
, “
Kinetostatic Analysis of Underactuated Fingers
,”
IEEE Trans. Rob. Autom.
,
20
(
2
), pp.
211
221
.
43.
Birglen
,
L.
,
Laliberté
,
T.
, and
Gosselin
,
C. M.
,
2007
,
Underactuated Robotic Hands
,
Springer
,
New York
.
44.
Aukes
,
D.
,
Heyneman
,
B.
,
Duchaine
,
V.
, and
Cutkosky
,
M. R.
,
2011
, “
Varying Spring Preloads to Select Grasp Strategies in an Adaptive Hand
,”
Proceedings of 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
San Francisco, CA
,
Sept. 25–30
, IEEE, pp.
1373
1379
.
45.
Hua
,
L.
,
Sheng
,
X.
,
Zhang
,
D.
, and
Zhu
,
X.
,
2016
, “
Towards the Analysis and Optimization of Underactuated Hands for Effective Grasp
,”
Int. J. Humanoid Robot.
,
13
(
03
), p.
1650004
.
46.
Laliberté
,
T.
, and
Gosselin
,
C. M.
,
1998
, “
Simulation and Design of Underactuated Mechanical Hands
,”
Mech. Mach. Theory
,
33
(
1–2
), pp.
39
57
.
47.
Kragten
,
G. A.
, and
Herder
,
J. L.
,
2010
, “
The Ability of Underactuated Hands to Grasp and Hold Objects
,”
Mech. Mach. Theory
,
45
(
3
), pp.
408
425
.
48.
Li
,
G.
,
Zhang
,
C.
,
Zhang
,
W.
,
Sun
,
Z.
, and
Chen
,
Q.
,
2014
, “
Coupled and Self-Adaptive Under-Actuated Finger With a Novel S-Coupled and Secondly Self-Adaptive Mechanism
,”
ASME J. Mech. Rob.
,
6
(
4
), p.
041010
.
49.
Zheng
,
E.
, and
Zhang
,
W.
,
2019
, “
An Underactuated PASA Finger Capable of Perfectly Linear Motion With Compensatory Displacement
,”
ASME J. Mech. Rob.
,
11
(
1
), p.
014505
.
You do not currently have access to this content.