Abstract

A novel approach is proposed to arrange the actuations of rigid foldable waterbomb origami with multiple facet loops such that the number of actuations equaled the degrees-of-freedom (DOF) of the origami. In this approach, the rigid waterbomb origami was regarded as a combination of three types of six-crease origami units, which is equivalent to spherical 6R mechanisms with three DOF. Then, clear, target, and arrangement parts were created to define the facets of the origami pattern in the proposed extrapolation method. The actuation arrangement for a waterbomb origami pattern, which extended outwards circumferentially from a six-crease origami unit, was completed, and adams software was used to verify the correctness of the arrangement. Finally, an intuitive mathematical method was used to arrange the actuations for this type of waterbomb origami. The proposed approach provided DOF for the rigid foldable waterbomb origami and facilitated an actuation design such that the origami exhibits unique motion and can be normally actuated.

References

1.
Wang
,
R.
,
Song
,
Y.
, and
Dai
,
J.S.
,
2021
, “
Reconfigurability of the Origami-Inspired Integrated 8R Kinematotropic Metamorphic Mechanism and Its Evolved 6R and 4R Mechanisms
,”
Mech. Mach. Theory
,
161
, p.
104245
.
2.
You
,
Z.
,
2014
, “
Folding Structures Out of Flat Materials
,”
Science
,
345
(
6197
), pp.
623
624
.
3.
Lyu
,
S.
,
Qin
,
B.
,
Deng
,
H.
, and
Ding
,
X.
,
2021
, “
Origami-Based Cellular Mechanical Metamaterials With Tunable Poisson's Ratio: Construction and Analysis
,”
Int. J. Mech. Sci.
,
212
(
1
), p.
106791
.
4.
Meloni
,
M.
,
Cai
,
J.
,
Zhang
,
Q.
,
Lee
,
D. S.
,
Li
,
M.
,
Ma
,
R.
,
Parashkevov
,
T. E.
, and
Feng
,
J.
,
2021
, “
Engineering Origami: A Comprehensive Review of Recent Applications, Design Methods, and Tools
,”
Adv. Sci.
,
8
(
13
), p.
2000636
.
5.
Nelson
,
T. G.
,
Zimmerman
,
T. K.
,
Magleby
,
S. P.
,
Lang
,
R. J.
, and
Howell
,
L. L.
,
2019
, “
Developable Mechanisms on Developable Surfaces
,”
Sci. Robot.
,
4
(
27
), p.
eaau5171
.
6.
Wang
,
C.
,
Guo
,
H.
,
Liu
,
R.
,
Yang
,
H.
, and
Deng
,
Z.
,
2021
, “
A Programmable Origami-Inspired Webbed Gripper
,”
Smart Mater. Struct.
,
30
(
5
), p.
55010
.
7.
Zhang
,
S.
,
Ke
,
X.
,
Jiang
,
Q.
,
Ding
,
H.
, and
Wu
,
Z.
,
2021
, “
Programmable and Reprocessable Multifunctional Elastomeric Sheets for Soft Origami Robots
,”
Sci. Robot.
,
6
(
53
), p.
eabd6107
.
8.
Zhang
,
Q.
,
Wang
,
X.
,
Lee
,
D. H.
,
Cai
,
J.
,
Zhang
,
R.
, and
Feng
,
J.
,
2021
, “
Development of Kinetic Origami Canopy Using Arc Miura Folding Patterns
,”
J. Build. Eng.
,
43
(
1
), p.
103116
.
9.
Cai
,
J.
,
Deng
,
X.
,
Xu
,
Y.
, and
Feng
,
J.
,
2015
, “
Geometric Design and Mechanical Behavior of a Deployable Cylinder With Miura Origami
,”
Smart Mater. Struct.
,
24
(
12
), p.
12503112
.
10.
Gattas
,
J. M.
,
Wu
,
W.
, and
You
,
Z.
,
2013
, “
Miura-Base Rigid Origami: Parameterizations of First-Level Derivative and Piecewise Geometries
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111011
.
11.
Wang
,
S.
,
Gao
,
Y.
,
Huang
,
H.
,
Li
,
B.
,
Guo
,
H.
, and
Liu
,
R.
,
2022
, “
Design of Deployable Curved-Surface Rigid Origami Flashers
,”
Mech. Mach. Theory
,
167
(
2
), p.
104512
.
12.
Morgan
,
J.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2016
, “
An Approach to Designing Origami-Adapted Aerospace Mechanisms
,”
ASME J. Mech. Des.
,
138
(
5
), p.
052301
.
13.
Wang
,
S.
,
Huang
,
H.
,
Jia
,
G.
,
Li
,
B.
,
Guo
,
H.
, and
Liu
,
R.
,
2022
, “
Design of a Novel Three-Limb Deployable Mechanism With Mobility Bifurcation
,”
Mech. Mach. Theory
,
172
(
27
), p.
104798
.
14.
Gogu
,
G.
,
2005
, “
Mobility of Mechanisms: A Critical Review
,”
Mech. Mach. Theory
,
40
(
9
), pp.
1068
1097
.
15.
Dai
,
J.
,
Huang
,
Z.
, and
Lipkin
,
H.
,
2006
, “
Mobility of Overconstrained Parallel Mechanisms
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
220
229
.
16.
Hervé
,
J. M.
,
1999
, “
The Lie Group of Rigid Body Displacements, a Fundamental Tool for Mechanism Design
,”
Mech. Mach. Theory
,
34
(
5
), pp.
719
730
.
17.
Dai
,
J.
, and
Jones
,
J. R.
,
1999
, “
Mobility in Metamorphic Mechanisms of Foldable/Erectable Kinds
,”
ASME J. Mech. Des.
,
121
(
3
), pp.
375
382
.
18.
Chen
,
Y.
,
Peng
,
R.
, and
You
,
Z.
,
2015
, “
Origami of Thick Panels
,”
Science
,
349
(
6246
), pp.
396
400
.
19.
Cai
,
J.
,
Qian
,
Z.
,
Jiang
,
C.
,
Feng
,
J.
, and
Xu
,
Y.
,
2016
, “
Mobility and Kinematic Analysis of Foldable Plate Structures Based on Rigid Origami
,”
ASME J. Mech. Robot.
,
8
(
6
), p.
064502
.
20.
Chen
,
Y.
,
Sareh
,
P.
,
Yan
,
J.
,
Fallah
,
A. S.
, and
Feng
,
J.
,
2019
, “
An Integrated Geometric- Graph-Theoretic Approach to Representing Origami Structures and Their Corresponding Truss Frameworks
,”
ASME J. Mech. Des.
,
141
(
9
), p.
091402
.
21.
Yu
,
H.
,
Guo
,
Z.
, and
Wang
,
J.
,
2018
, “
A Method of Calculating the Degree of Freedom of Foldable Plate Rigid Origami With Adjacency Matrix
,”
Adv. Mech. Eng.
,
10
(
6
), p.
1687814018779696
.
22.
Wang
,
S.
,
Huang
,
H.
,
Li
,
B.
, and
Yang
,
X.
,
2020
, “
Mobility Analysis of Thin-Panel Origamis Based on a Coplanar 2-Twist Screw System
,”
ASME J. Mech. Des.
,
142
(
11
), p.
113302
.
23.
Li
,
B.
,
Huang
,
H.
, and
Deng
,
Z.
,
2015
, “
Mobility Analysis of Symmetric Deployable Mechanisms Involved in a Coplanar 2-Twist Screw System
,”
ASME J. Mech. Robot.
,
8
(
1
), p.
011007
.
24.
Chen
,
Y.
,
Feng
,
H.
,
Ma
,
J.
,
Peng
,
R.
, and
You
,
Z.
,
2016
, “
Symmetric Waterbomb Origami
,”
Proc. R. Soc. A
,
472
(
2190
), p.
20150846
.
25.
Lee
,
D. Y.
,
Kim
,
S. R.
,
Kim
,
J. S.
,
Park
,
J. J.
, and
Cho
,
K. J.
,
2017
, “
Origami Wheel Transformer: A Variable-Diameter Wheel Drive Robot Using an Origami Structure
,”
Soft Robot.
,
4
(
2
), pp.
163
180
.
26.
Li
,
S.
,
Vogt
,
D. M.
,
Rus
,
D.
, and
Wood
,
R. J.
,
2017
, “
Fluid-Driven Origami-Inspired Artificial Muscles
,”
Proc. Natl. Acad. Sci. U. S. A.
,
114
(
50
), pp.
13132
13137
.
27.
Li
,
S.
,
Stampfli
,
J. J.
,
Xu
,
H. J.
,
Malkin
,
E.
,
Diaz
,
E. V.
,
Rus
,
D.
, and
Wood
,
R. J.
,
2019
, “
A Vacuum-Driven Origami ‘Magic-Ball’ Soft Gripper
,”
International Conference on Robotics and Automation (ICRA)
,
Montreal, Canada
,
May 20
, pp.
7401
7408
.
28.
Fang
,
H.
,
Zhang
,
Y.
, and
Wang
,
K.
,
2017
, “
Origami-Based Earthworm-Like Locomotion Robots
,”
Bioinspir. Biomim.
,
12
(
6
), p.
065003
.
You do not currently have access to this content.