Abstract

Within the wide field of self-assembly, the self-folding chain has unique potential for reliable and repeatable assembly of three-dimensional structures as demonstrated by protein biosynthesis. This potential could be translated to self-reconfiguring robots by utilizing magnetic forces between the chain components as a driving force for the folding process. Due to the constraints introduced by the joints between the chain components, simulation of the dynamics of longer chains is computationally intensive and challenging. This article presents a novel analytical approach to formulate the Newton–Euler dynamics of a self-reconfiguring chain in a single vectorized differential equation. The vectorized differential equation allows for a convenient implementation of a parallel processing architecture using single instruction multiple data (SIMD) or graphical processing unit (GPU) computation and as a result can improve simulation time of rigid body chains. Properties of existing interpretations of the Newton–Euler and Euler–Lagrange algorithms are discussed in their efficiency to compute the dynamics of rigid body chains. Finally, GPU and SIMD-supported simulation, based on the vectorized Newton–Euler equations described in this article, are compared, showing a significant improvement in computation time using GPU architecture for long chains with certain chain geometry.

References

1.
Grifith
,
S. T.
, and
Jacobson
,
J.
,
2004
, “
Growing Machines
,”
Ph.D. dissertation
,
School of Architecture and Planning, Massachusetts Institute of Technology
,
Cambridge, MA
.
2.
Felton
,
S. M.
,
Tolley
,
M. T.
,
Shin
,
B.
,
Onal
,
C. D.
,
Demaine
,
E. D.
,
Rus
,
D.
, and
Wood
,
R. J.
,
2013
, “
Self-Folding With Shape Memory Composites
,”
Soft Matter
,
9
(
32
), pp.
7688
7694
.
3.
Wei
,
L.
,
Liao
,
M.
,
Gao
,
X.
, and
Zou
,
Q.
,
2015
, “
Enhanced Protein Fold Prediction Method Through a Novel Feature Extraction Technique
,”
IEEE Trans. Nanobiosci.
,
14
(
6
), pp.
649
659
.
4.
An
,
B.
, and
Rus
,
D.
,
2014
, “
Designing and Programming Self-Folding Sheets
,”
Rob. Auton. Syst.
,
62
(
7
), pp.
976
1001
.
5.
Hu
,
W.
,
Lum
,
G.
,
Mastrangeli
,
M.
, and
Sitti
,
M.
,
2018
, “
Small-Scale Soft-Bodied Robot With Multimodal Locomotion
,”
Nature
,
554
(
7690
), pp.
81
85
.
6.
Zimmermann
,
K.
,
Naletova
,
V. A.
,
Zeidis
,
I.
,
Turkov
,
V. A.
,
Kolev
,
E.
,
Lukashevich
,
M. V.
, and
Stepanov
,
G. V.
,
2007
, “
A Deformable Magnetizable Worm in a Magnetic Field—A Prototype of a Mobile Crawling Robot
,”
J. Magn. Magn. Mater.
,
311
(
1
), pp.
450
453
.
7.
Fass
,
T. H.
,
Hao
,
G.
, and
Cantillon-Murphy
,
P.
,
2020
, “
On Planar Self-Folding Magnetic Chains: Comparison of Newton–Euler Dynamics and Internal Energy Optimization
,”
Rob. Auton. Syst.
,
132
(
1
), p.
103601
.
8.
McEvoy
,
R. P.
,
McMenamin
,
M.
,
Ha
,
G.
,
Lang
,
J. H.
, and
Cantillon-Murphy
,
P.
,
2012
, “
Self-Deployed Magnetic Polygons: Design, Construction, and Application
,”
IEEE Trans. Magn.
,
62
(
7
), pp.
976
1001
.
9.
Tugwell
,
J.
,
Brennan
,
P.
,
O’Shea
,
C.
,
O'Donoghue
,
K.
,
Power
,
T.
,
O'Shea
,
M.
,
Griffiths
,
J.
,
Cahill
,
R.
, and
Cantillon-Murphy
,
P.
,
2015
, “
Electropermanent Magnetic Anchoring for Surgery and Endoscopy
,”
IEEE Trans. Biomed. Eng.
,
62
(
3
), pp.
842
848
.
10.
Aardema
,
M. D.
,
2005
,
Newton-Euler Dynamics
, 1st ed.,
Springer
,
Boston, MA
.
11.
Gregory
,
R. D.
,
2006
,
Classical Mechanics
, 1st ed.,
Cambridge University Press
,
Cambridge, UK
.
12.
Silver
,
W.
,
1982
, “
On the Equivalence of Lagrangian and Newton-Euler Dynamics for Manipulators
,”
Int. J. Rob. Res.
,
1
(
2
), pp.
60
70
.
13.
Featherstone
,
R.
,
1989
, “
Robot Dynamics Algorithms
,”
Automatica
,
25
(
5
), pp.
785
786
.
14.
Mirtich
,
B. V.
,
1996
, “
Impulse-Based Dynamic Simulation of Rigid Body Systems
,”
Ph.D. dissertation
,
Department of Computer Science, University of California
,
Berkeley, CA
.
15.
Nandihal
,
P. V.
,
Mohan
,
A.
, and
Saha
,
S. K.
,
2022
,
Dynamics of Rigid-Flexible Robots and Multibody Systems
,
Springer
,
Singapore
, pp.
29
42
.
16.
Naishlos
,
D.
,
Biberstein
,
M.
,
Ben-David
,
S.
, and
Zaks
,
A.
,
2003
, “
Vectorizing for a SIMdD DSP Architecture
,”
CASES 2003: International Conference on Compilers, Architecture, and Synthesis for Embedded Systems
,
San Jose, CA
,
Oct. 30–Nov. 1
, pp.
2
11
.
17.
Featherstone
,
R.
,
1999
, “
Divide-and-Conquer Articulated-Body Algorithm for Parallel O(log(n)) Calculation of Rigid-Body Dynamics. Part 1: Basic Algorithm
,”
Int. J. Rob. Res.
,
18
(
9
), pp.
867
875
.
18.
Chadaj
,
K.
,
Malczyk
,
P.
, and
Fraczek
,
J.
,
1996
, “
A Parallel Recursive Hamiltonian Algorithm for Forward Dynamics of Serial Kinematic Chains
,”
IEEE Trans. Rob.
,
33
(
3
), pp.
647
660
.
19.
Stokes
,
A.
, and
Brockett
,
R.
,
1996
, “
Dynamics of Kinematic Chains
,”
Int. J. Rob. Res.
,
15
(
4
), pp.
393
405
.
20.
Müller
,
P.
,
1992
, “
Robot Dynamics and Control
,”
Automatica
,
28
(
3
), pp.
655
656
.
21.
Hairer
,
E.
,
Norsett
,
S. P.
, and
Wanner
,
G.
,
1987
, “
Solving Ordinary Differential Equations I. Nonstiff Problems
,”
Math. Comput. Simul.
,
29
(
5
), p.
447
.
22.
Wang
,
Y.
,
Goldstone
,
R.
,
Weikuan
,
Y.
, and
Wang
,
T.
,
2014
, “
Characterization and Optimization of Memory-Resident MapReduce on HPC Systems
,”
IEEE 28th International Parallel and Distributed Processing Symposium
,
Phoenix, AZ
,
May 19–23
, vol. 28, pp.
799
808
.
You do not currently have access to this content.