Abstract

By introducing the modular and reconfigurable design, the limbs of a hexapod robot can be assembled into different configurations to meet various task requirements. Contrary to the fixed configuration system, the task capabilities of the modular reconfigurable robot vary with the configurations. This article addresses the problem of the configuration enumeration and configuration expression of a modular reconfigurable robot. First, by establishing the permutation group of the regular hexagon (the base shape of the modular reconfigurable robot) and adopting the Pólya enumeration theorem, the theoretical formula of the nonisomorphic configuration enumeration is derived. Then, considering the change in structural features, equivalence relations based on structural features are defined and the structural feature method (SFM) is proposed to enumerate the nonisomorphic configurations. In addition, to express configurations more intuitively, a senary vertex identification array with the same dimension as the number of modules is presented, which can be transformed from the decimal index of the configuration. Simulation analysis demonstrates that the result of the SFM is consistent with that of the theoretical calculation, which also confirms the effectiveness and accuracy of the two methods applied in the nonisomorphic configuration enumeration of the modular reconfigurable robot.

References

1.
Showalter
,
M.
, and
Hong
,
D.
,
2008
, “
Workspace Analysis for the Limbs of a Hexapedal Robot Walking Gait Generation Algorithm Development
,”
Proceedings of the ASME Design Engineering Technical Conference
,
New York
,
Aug. 3–6
, pp.
1207
1214
.
2.
Imran Uddin
,
M.
,
Shahriar Alamgir
,
M.
,
Chakrabarty
,
J.
,
Iqbal Hossain
,
M.
, and
Arif Abdulla Samy
,
M.
,
2019
, “
Multitasking Spider Hexapod Robot
,”
2019 IEEE International Conference on Robotics, Automation, Artificial-Intelligence and Internet-of-Things, RAAICON 2019
,
Dhaka, Bangladesh
,
Nov. 29–Dec. 1
, pp.
135
140
.
3.
Orozco-Magdaleno
,
E. C.
,
Cafolla
,
D.
,
Castillo-Castaneda
,
E.
, and
Carbone
,
G.
,
2020
, “
Static Balancing of Wheeled-Legged Hexapod Robots
,”
Robotics
,
9
(
2
), p.
23
.
4.
Zhao
,
Y.
,
Gao
,
F.
, and
Hu
,
Y.
,
2019
, “
Novel Method for Six-Legged Robots Turning Valves Based on Force Sensing
,”
Mech. Mach. Theory
,
133
, pp.
64
83
.
5.
Hwang
,
M. C.
,
Huang
,
C. J.
, and
Liu
,
F.
,
2018
, “
A Hexapod Robot With Non-Collocated Actuators
,”
Appl. Syst. Innov.
,
1
(
3
), pp.
1
15
.
6.
Hwang
,
M. C.
,
Liu
,
F.
,
Yang
,
J.
, and
Lin
,
Y.
,
2019
, “
The Design and Building of a Hexapod Robot With Biomimetic Legs
,”
Appl. Sci.
,
9
(
14
), p.
2792
.
7.
Wilcox
,
B. H.
,
Litwin
,
T. E.
,
Biesiadecki
,
J. J.
,
Matthews
,
J. B.
,
Heverly
,
M. C.
,
Morrison
,
J. C.
,
Townsend
,
J. A.
,
Ahmad
,
N. M.
,
Sirota
,
A. R.
, and
Cooper
,
B. K.
,
2007
, “
ATHLETE: A Cargo Handling and Manipulation Robot for the Moon
,”
J. Field Robot.
,
24
(
5
), pp.
421
434
.
8.
Inoue
,
K.
,
Ooe
,
K.
, and
Lee
,
S.
,
2010
, “
Pushing Methods for Working Six-Legged Robots Capable of Locomotion and Manipulation in Three Modes
,”
Proceedings—IEEE International Conference on Robotics and Automation
,
Anchorage, AL
,
May 4-8
, pp.
4742
4748
.
9.
Ding
,
X.
, and
Yang
,
F.
,
2016
, “
Study on Hexapod Robot Manipulation Using Legs
,”
Robotica
,
34
(
2
), pp.
468
481
.
10.
Kalouche
,
S.
,
Rollinson
,
D.
, and
Choset
,
H.
,
2015
, “
Modularity for Maximum Mobility and Manipulation: Control of a Reconfigurable Legged Robot With Series-Elastic Actuators
,”
SSRR 2015—2015 IEEE International Symposium on Safety, Security, and Rescue Robotics
,
West Lafayette, IN
,
Oct. 18–20
, pp.
1
8
.
11.
Whitman
,
J.
,
Su
,
S.
,
Coros
,
S.
,
Ansari
,
A.
, and
Choset
,
H.
,
2017
, “
Generating Gaits for Simultaneous Locomotion and Manipulation
,”
IEEE International Conference on Intelligent Robots and Systems
,
Vancouver, BC, Canada
,
Sept. 24–28
, pp.
2723
2729
.
12.
Ning
,
M.
,
Shao
,
L.
,
Chen
,
F.
,
Li
,
M.
,
Zhang
,
C.
, and
Zhang
,
Q.
,
2019
, “
Modeling and Analysis of a Modular Multilegged Robot With Improved Fault Tolerance and Environmental Adaptability
,”
Mathematical Problems Eng.
,
2019
(
6
), pp.
1
17
.
13.
Castano
,
A.
,
Behar
,
A.
, and
Will
,
P. M.
,
2002
, “
The Conro Modules for Reconfigurable Robots
,”
IEEE/ASME Trans. Mechatron.
,
7
(
4
), pp.
403
409
.
14.
Yim
,
M.
,
Roufas
,
K.
,
Duff
,
D.
,
Zhang
,
Y.
,
Eldershaw
,
C.
, and
Homans
,
S.
,
2003
, “
Modular Reconfigurable Robots in Space Applications
,”
Auton. Robots
,
14
(
2–3
), pp.
225
237
.
15.
Feng
,
J.
, and
Liu
,
J.
,
2021
, “
Configuration Analysis of a Chain-Type Reconfigurable Modular Robot Inspired by Normal Alkane
,”
Sci. China Technol. Sci.
,
64
(
6
), pp.
1167
1176
.
16.
Chen
,
I. M.
, and
Burdick
,
J. W.
,
1998
, “
Enumerating the Non-Isomorphic Assembly Configurations of Modular Robotic Systems
,”
Int. J. Robot. Res.
,
17
(
7
), pp.
702
719
.
17.
Park
,
M.
,
Chitta
,
S.
,
Teichman
,
A.
, and
Yim
,
M.
,
2008
, “
Automatic Configuration Recognition Methods in Modular Robots
,”
Int. J. Robot. Res.
,
27
(
3–4
), pp.
403
421
.
18.
Asadpour
,
M.
,
Ashtiani
,
M. H. Z.
,
Sproewitz
,
A.
, and
Ijspeert
,
A.
,
2009
, “
Graph Signature for Self-Reconfiguration Planning of Modules With Symmetry
,”
2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2009
,
Louis, MO
,
Oct. 11–15
,
pp. 5295-5300
.
19.
Liu
,
J.
,
Wang
,
Y.
,
Ma
,
S.
, and
Li
,
Y.
,
2010
, “
Enumeration of the Non-Isomorphic Configurations for a Reconfigurable Modular Robot With Square-Cubic-Cell Modules
,”
Int. J. Adv. Robot. Syst.
,
7
(
4
), p.
31
.
20.
Stoy
,
K.
, and
Brandt
,
D.
,
2013
, “
Efficient Enumeration of Modular Robot Configurations and Shapes
,”
IEEE International Conference on Intelligent Robots and Systems
,
Tokyo, Japan
,
Nov. 3–7
,
pp. 4296-4301
.
21.
Liu
,
J.
,
Zhang
,
X.
,
Zhang
,
K.
,
Dai
,
J. S.
,
Li
,
S.
, and
Sun
,
Q.
,
2019
, “
Configuration Analysis of a Reconfigurable Rubik’s Snake Robot
,”
Proc. Inst. Mech. Eng. C: J. Mech. Eng. Sci.
,
233
(
9
), pp.
3137
3154
.
22.
Ding
,
X.
, and
Lu
,
S.
,
2013
, “
Fundamental Reconfiguration Theory of Chain-Type Modular Reconfigurable Mechanisms
,”
Mech. Mach. Theory
,
70
, pp.
487
507
.
23.
Golestan
,
K.
,
Asadpour
,
M.
, and
Moradi
,
H.
,
2013
,
A New Graph Signature Calculation Method Based on Power Centrality for Modular Robots, Distributed Autonomous Robotic Systems. Springer Tracts in Advanced Robotics
, Vol.
83
,
Springer
,
Berlin/Heidelberg
, pp.
505
516
.
24.
Hou
,
F.
, and
Shen
,
W. M.
,
2014
, “
Graph-Based Optimal Reconfiguration Planning for Self-Reconfigurable Robots
,”
Rob. Auton. Syst.
,
62
(
7
), pp.
1047
1059
.
25.
Nguyen
,
C. T.
,
Phung
,
H.
,
Hoang
,
P. T.
,
Nguyen
,
T. D.
,
Jung
,
H.
, and
Choi
,
H. R.
,
2018
, “
Development of an Insect-Inspired Hexapod Robot Actuated by Soft Actuators
,”
ASME. J. Mech. Robot.
,
10
(
6
), p.
061016
.
26.
Matamala
,
A. R.
,
2002
, “
Pólya’s Combinatorial Method and the Isomer Enumeration Problem
,”
J. Chil. Chem. Soc.
,
47
(
2
), pp.
105
112
.
27.
Guest
,
S. D.
, and
Fowler
,
P. W.
,
2005
, “
A Symmetry-Extended Mobility Rule
,”
Mech. Mach. Theory
,
40
(
9
), pp.
1002
1014
.
28.
Ding
,
H.
, and
Huang
,
Z.
,
2007
, “
A New Theory for the Topological Structure Analysis of Kinematic Chains and Its Applications
,”
Mech. Mach. Theory
,
42
(
10
), pp.
1264
1279
.
29.
Hwang
,
Y. W.
,
Lin
,
S. H.
, and
Wu
,
C. C.
,
2011
, “
Generating Functions for Mechanism Specialization
,”
Mech. Mach. Theory
,
46
(
4
), pp.
492
514
.
You do not currently have access to this content.