Abstract

The rapid development of the automotive industry calls for large demands for fixtures with high modularity and full flexibility. A novel reconfigurable modular fixture is proposed in this article. The fixture, which provides high loading capacity, is designed based on the kinematic characteristics of dead point of linkage. The redundant actuation is introduced to increase the reliability of the mechanism. Kinematics of the loading mechanism is modeled and analyzed. The stiffness model of the mechanism is established through assembling the stiffness matrix of different links. Both kinematic parameters and structural parameters are optimized synchronously for obtaining the minimum deformations of the mechanism subject to constraints on volume and mass. The prototype of the developed fixture is designed and its comprehensive performance is analyzed. The modular design allows easier maintenance and replacement of the mechanism. The proposed design can also be utilized to other industrial applications.

References

1.
Rukshan
,
K.
,
Chaminie
,
W.
,
Madushan
,
M.
, and
Jayaweera
,
N.
,
2015
, “
Design and Development of Flexible Fixturing System for Handling Irregular Shaped Components
,”
2015 Moratuwa Engineering Research Conference (MERCon)
,
Moratuwa, Sri Lanka
,
Apr. 7–8
, IEEE, pp.
171
176
.
2.
Lu
,
S.
,
Ahmad
,
Z.
,
Zoppi
,
M.
,
Ding
,
X.
,
Zlatanov
,
D.
, and
Molfino
,
R.
,
2016
, “
Design and Testing of a Highly Reconfigurable Fixture With Lockable Robotic Arms
,”
ASME J. Mech. Des.
,
138
(
8
), p.
085001
.
3.
Fan
,
W.
,
Zheng
,
L.
, and
Wang
,
Y.
,
2018
, “
An Automated Reconfigurable Flexible Fixture for Aerospace Pipeline Assembly Before Welding
,”
Int. J. Adv. Manuf. Technol.
,
97
(
9
), pp.
3791
3811
.
4.
de Leonardo
,
L.
,
Zoppi
,
M.
,
Li
,
X.
,
Gagliardi
,
S.
, and
Molfino
,
R.
,
2012
, “
Developing a New Concept of Self Reconfigurable Intelligent Swarm Fixtures
,”
Advances in Reconfigurable Mechanisms and Robots I
,
Tianjin, China
,
July 9–11
, Springer, pp.
321
331
.
5.
Seloane
,
W.
,
Mpofu
,
K.
,
Ramatsetse
,
B.
, and
Modungwa
,
D.
,
2020
, “
Conceptual Design of Intelligent Reconfigurable Welding Fixture for Rail Car Manufacturing Industry
,”
Procedia CIRP
,
91
, pp.
583
593
.
6.
Hussain
,
I.
,
Al-Ketan
,
O.
,
Renda
,
F.
,
Malvezzi
,
M.
,
Prattichizzo
,
D.
,
Seneviratne
,
L.
,
Abu Al-Rub
,
R. K.
, and
Gan
,
D.
,
2020
, “
Design and Prototyping Soft–Rigid Tendon-Driven Modular Grippers Using Interpenetrating Phase Composites Materials
,”
Int. J. Robot. Res.
,
39
(
14
), pp.
1635
1646
.
7.
Gothwal
,
S.
, and
Raj
,
T.
,
2017
, “
Different Aspects in Design and Development of Flexible Fixtures: Review and Future Directions
,”
Int. J. Serv. Oper. Manage.
,
26
(
3
), pp.
386
410
.
8.
Bi
,
Z. M.
,
Lang
,
S. Y.
,
Verner
,
M.
, and
Orban
,
P.
,
2008
, “
Development of Reconfigurable Machines
,”
Int. J. Adv. Manuf. Technol.
,
39
(
11–12
), pp.
1227
1251
.
9.
Leguay-Durand
,
S.
, and
Reboulet
,
C.
,
1997
, “
Optimal Design of a Redundant Spherical Parallel Manipulator
,”
Robotica
,
15
(
4
), pp.
399
405
.
10.
Tang
,
Z.
, and
Dai
,
J. S.
,
2018
, “
Bifurcated Configurations and Their Variations of an 8-bar Linkage Derived From an 8-Kaleidocycle
,”
Mech. Mach. Theory
,
121
, pp.
745
754
.
11.
Kang
,
X.
,
Ma
,
X.
,
Dai
,
J. S.
, and
Yu
,
H.
,
2020
, “
Bifurcation Variations and Motion-Ruled-Surface Evolution of a Novel Schatz Linkage Induced Metamorphic Mechanism
,”
Mech. Mach. Theory
,
150
, p.
103867
.
12.
He
,
X.
,
Kong
,
X.
,
Chablat
,
D.
,
Caro
,
S.
, and
Hao
,
G.
,
2014
, “
Kinematic Analysis of a Single-Loop Reconfigurable 7r Mechanism With Multiple Operation Modes
,”
Robotica
,
32
(
7
), pp.
1171
1188
.
13.
Tian
,
H.
,
Ma
,
H.
, and
Ma
,
K.
,
2018
, “
Method for Configuration Synthesis of Metamorphic Mechanisms Based on Functional Analyses
,”
Mech. Mach. Theory
,
123
, pp.
27
39
.
14.
Tosi
,
D.
,
Legnani
,
G.
,
Pedrocchi
,
N.
,
Righettini
,
P.
, and
Giberti
,
H.
,
2010
, “
Cheope: A New Reconfigurable Redundant Manipulator
,”
Mech. Mach. Theory
,
45
(
4
), pp.
611
626
.
15.
Lu
,
S.
,
Zlatanov
,
D.
,
Ding
,
X.
,
Zoppi
,
M.
, and
Guest
,
S. D.
,
2016
, “
Reconfigurable Chains of Bifurcating Type III Bricard Linkages
,”
Advances in Reconfigurable Mechanisms and Robots II
,
Beijing, China
,
July 20–22
, Springer, pp.
3
14
.
16.
Palpacelli
,
M.-C.
,
Palmieri
,
G.
, and
Callegari
,
M.
,
2012
, “
A Redundantly Actuated 2-Degrees-of-Freedom Mini Pointing Device
,”
ASME J. Mech. Rob.
,
4
(
3
), p.
031012
.
17.
Ding
,
X.
, and
Li
,
X.
,
2014
, “
Design and Test Analysis of a Solar Array Root Hinge Drive Assembly
,”
Chin. J. Mech. Eng.
,
27
(
5
), pp.
909
918
.
18.
Nurahmi
,
L.
, and
Gan
,
D.
,
2020
, “
Reconfiguration of a 3-(rr) ps Metamorphic Parallel Mechanism Based on Complete Workspace and Operation Mode Analysis
,”
ASME J. Mech. Rob.
,
12
(
1
), p.
011002
.
19.
Xiao
,
H.
,
Lu
,
S.
, and
Ding
,
X.
,
2018
, “
Tension Cable Distribution of a Membrane Antenna Frame Based on Stiffness Analysis of the Equivalent 4-SPS-S Parallel Mechanism
,”
Mech. Mach. Theory
,
124
, pp.
133
149
.
20.
Xiao
,
H.
,
Lyu
,
S.
, and
Ding
,
X.
,
2020
, “
Optimizing Accuracy of a Parabolic Cylindrical Deployable Antenna Mechanism Based on Stiffness Analysis
,”
Chin. J. Aeronaut.
,
33
(
5
), pp.
1562
1572
.
21.
Dai
,
L.
,
Guan
,
F.
, and
Guest
,
J. K.
,
2014
, “
Structural Optimization and Model Fabrication of a Double-Ring Deployable Antenna Truss
,”
Acta Astronautica
,
94
(
2
), pp.
843
851
.
You do not currently have access to this content.