Abstract

Rehabilitation with exoskeletons after hip joint replacement is a tendency to achieve efficient recovery of people to rebuild their human motor functions. However, the kinematic mismatch between the kinematic and biological hip is a problem in most existing exoskeletons that can cause additional stress in the hip. To avoid secondary damage, the misalignment between the mechanical and biological hip joint of an exoskeleton must be compensated. This paper introduces a novel hip exoskeleton system based on parallel structure. The exoskeleton can inherently address the kinematic mismatch by introducing additional kinematic redundancy, while requiring no additional kinematic components and volumes. To achieve bidirectional full-gait-cycle walking assistance, a remote actuation system is designed for power delivery, and a control scheme is proposed to reject disturbances caused by gait dynamics during walking exercises. Human testing was carried out to evaluate the performance of the system. The results show that the exoskeleton has good human–machine kinematic compatibility and can achieve promising force tracking in the presence of gait dynamics.

References

1.
Krastanova
,
M. S.
,
Ilieva
,
E. M.
, and
Vacheva
,
D. E.
,
2017
, “
Rehabilitation of Patients With Hip Joint Arthroplasty (Late Post-Surgery Period—Hospital Rehabilitation)
,”
Folia Med. (Plovdiv)
,
59
(
2
), pp.
217
221
.
2.
Rahmann
,
A. E.
,
Brauer
,
S. G.
, and
Nitz
,
J. C.
,
2009
, “
A Specific Inpatient Aquatic Physiotherapy Program Improves Strength After Total Hip or Knee Replacement Surgery: A Randomized Controlled Trial
,”
Arch. Phys. Med. Rehabil.
,
90
(
5
), pp.
745
755
.
3.
Paravlic
,
A. H.
,
Pisot
,
R.
, and
Marusic
,
U.
,
2019
, “
Specific and General Adaptations Following Motor Imagery Practice Focused on Muscle Strength in Total Knee Arthroplasty Rehabilitation: A Randomized Controlled Trial
,”
PLoS One
,
14
(
8
), p.
e0221089
.
4.
American Academy of Orthopaedic Surgeons
,
2017
, “
Total Hip Replacement Exercise Guide
,”
American Academy of Orthopaedic Surgeons
, last modified February, accessed December 27, 2021, https://orthoinfo.aaos.org/en/recovery/total-hip-replacement-exercise-guide/.
5.
Zhou
,
L.
,
Chen
,
W.
,
Wang
,
J.
,
Bai
,
S.
,
Yu
,
H.
, and
Zhang
,
Y.
,
2018
, “
A Novel Precision Measuring Parallel Mechanism for the Closed-Loop Control of a Biologically Inspired Lower Limb Exoskeleton
,”
IEEE/ASME Trans. Mechatron.
,
23
(
6
), pp.
2693
2703
.
6.
Näf
,
M. B.
,
Junius
,
K.
,
Rossini
,
M.
,
Rodriguez-Guerrero
,
C.
,
Vanderborght
,
B.
, and
Lefeber
,
D.
,
2018
, “
Misalignment Compensation for Full Human-Exoskeleton Kinematic Compatibility: State of the Art and Evaluation
,”
ASME Appl. Mech. Rev.
,
70
(
5
), p.
050802
.
7.
Wang
,
X.
,
Guo
,
S.
,
Qu
,
H.
, and
Song
,
M.
,
2019
, “
Design of a Purely Mechanical Sensor-Controller Integrated System for Walking Assistance on an Ankle-Foot Exoskeleton
,”
Sensors
,
19
(
14
), p.
3196
.
8.
Chiu
,
V. L.
,
Raitor
,
M.
, and
Collins
,
S. H.
,
2021
, “
Design of a Hip Exoskeleton With Actuation in Frontal and Sagittal Planes
,”
IEEE Trans. Med. Robot. Bionics
,
3
(
3
), pp.
773
782
.
9.
Kainz
,
H.
,
Hajek
,
M.
,
Modenese
,
L.
,
Saxby
,
D. J.
,
Lloyd
,
D. G.
, and
Carty
,
C. P.
,
2017
, “
Reliability of Functional and Predictive Methods to Estimate the Hip Joint Centre in Human Motion Analysis in Healthy Adults
,”
Gait Posture
,
53
(
1
), pp.
179
184
.
10.
Wang
,
X.
,
Guo
,
S.
,
Qu
,
B.
,
Song
,
M.
, and
Qu
,
H.
,
2020
, “
Design of a Passive Gait-Based Ankle-Foot Exoskeleton With Self-Adaptive Capability
,”
Chin. J. Mech.
,
33
(
1
), pp.
1
11
.
11.
Lee
,
Y.
,
Kim
,
Y. J.
,
Lee
,
J.
,
Lee
,
M.
,
Choi
,
B.
,
Kim
,
J.
,
Park
,
Y. J.
, and
Choi
,
J.
,
2017
, “
Biomechanical Design of a Novel Flexible Exoskeleton for Lower Extremities
,”
IEEE–ASME Trans. Mech.
,
22
(
5
), pp.
2058
2069
.
12.
Beil
,
J.
, and
Asfour
,
T.
,
2016
, “
New Mechanism for a 3 DOF Exoskeleton Hip Joint With Five Revolute and Two Prismatic Joints
,”
Proceedings of the Sixth IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob)
,
Singapore
,
June 26–29,
pp.
787
792
, Inspec Accession No. 16192656.
13.
Kim
,
J.
,
Lee
,
G.
,
Heimgartner
,
R.
,
Revi
,
D. A.
,
Karavas
,
N.
,
Nathanson
,
D.
,
Galiana
,
I.
, et al
,
2019
, “
Reducing the Metabolic Rate of Walking and Running With a Versatile, Portable Exosuit
,”
Science
,
365
(
6454
), pp.
668
672
.
14.
Chen
,
Z.
,
Guo
,
Q.
,
Xiong
,
H.
,
Jiang
,
D.
, and
Yan
,
Y.
,
2021
, “
Control and Implementation of 2-DOF Lower Limb Exoskeleton Experiment Platform
,”
Chin. J. Mech.
,
34
(
1
), pp.
1
17
.
15.
Wang
,
X.
,
Guo
,
S.
,
Song
,
M.
, and
Wang
,
P.
,
2021
, “
Mechanical Design and Experimental Verification of a Parallel Hip Exoskeleton With Virtual Rotation Center
,”
Proceedings of the 2021 IEEE International Conference on Advanced Robots & Mechatronics (ICARM)
,
Chongqing, China
,
July 3–5,
pp.
230
235
, Inspec Accession No. 21159266.
16.
Hunt
,
J.
, and
Lee
,
H.
,
2018
, “
A New Parallel Actuated Architecture for Exoskeleton Applications Involving Multiple Degree-of-Freedom Biological Joints
,”
ASME J. Mech. Rob.
,
10
(
5
), p.
051017
.
17.
Christensen
,
S.
, and
Bai
,
S.
,
2018
, “
Kinematic Analysis and Design of a Novel Shoulder Exoskeleton Using a Double Parallelogram Linkage
,”
ASME J. Mech. Rob.
,
10
(
4
), p.
041008
.
18.
Aguirre-Ollinger
,
G.
,
Narayan
,
A.
, and
Yu
,
H.
,
2019
, “
Phase-Synchronized Assistive Torque Control for the Correction of Kinematic Anomalies in the Gait Cycle
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
27
(
11
), pp.
2305
2314
.
19.
Yu
,
H.
,
Huang
,
S.
,
Thakor
,
N. V.
,
Chen
,
G.
,
Toh
,
S. L.
,
Cruz
,
M. S.
,
Ghorbel
,
Y.
, and
Zhu
,
C.
,
2013
, “
A Novel Compact Compliant Actuator Design for Rehabilitation Robots
,”
Proceedings of the 13th International Conference on Rehabilitation Robotics (ICORR)
,
Seattle, WA,
June 24–26
, p.
24187295
, Inspect Accession No. 13879683.
20.
Agrawal
,
V.
,
Peine
,
W. J.
, and
Yao
,
B.
,
2010
, “
Modeling of Transmission Characteristics Across a Cable–Conduit System
,”
IEEE Trans. Rob.
,
26
(
5
), pp.
914
924
.
21.
Chen
,
S.
,
Chen
,
Z.
,
Yao
,
B.
,
Zhu
,
X.
,
Zhu
,
S.
,
Wang
,
Q.
, and
Song
,
Y.
,
2016
, “
Adaptive Robust Cascade Force Control of 1-DOF Hydraulic Exoskeleton for Human Performance Augmentation
,”
IEEE–ASME Trans. Mech.
,
22
(
2
), pp.
589
600
.
22.
Yu
,
H.
,
Huang
,
S.
,
Chen
,
G.
,
Pan
,
Y.
, and
Guo
,
Z.
,
2015
, “
Human–Robot Interaction Control of Rehabilitation Robots With Series Elastic Actuators
,”
IEEE Trans. Rob.
,
31
(
5
), pp.
1089
1100
.
23.
Ding
,
Y.
,
Galiana
,
I.
,
Siviy
,
C.
,
Panizzolo
,
F. A.
, and
Walsh
,
C.
,
2016
, “
IMU-Based Iterative Control for Hip Extension Assistance With a Soft Exosuit
,”
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)
,
Stockholm, Sweden
,
May 16–21
, pp.
3501
3508
, Inspec Accession No. 16055647.
You do not currently have access to this content.