Abstract

This paper proposed a systematic framework to automatically design and fabricate optimized soft robotic fingers. The soft finger is composed of a soft silicone structure with inner air chambers and a harder outer layer, which are fabricated by molding process and 3D printing, respectively. The softer layer is utilized for actuation while the supportive hard structure is used to impose constraints. The framework applies a topology optimization approach based on rational approximation of material properties (RAMP) method to obtain an optimal design of the outer layer of the soft fingers. Two basic motion primitives (bending and twisting) of the soft finger were explored. A multi-segmented soft bending finger and a soft twisting finger were designed and fabricated through the proposed framework. This work also explored the combination of bending and twisting primitives by developing a combined bending-twisting soft finger. The soft fingers were characterized by free and blocked movement tests. The experiments showed that the triple-segmented soft finger can achieve a maximum of 50.5 deg no-load bending under the actuation pressure of 53 kPa. The blocked movement test on the multi-segmented soft actuating finger showed that this finger could generate up to a maximum of 0.63 N force under 57 kPa actuation pressure in 7 s of inflating time. The developed twisting soft finger was shown to achieve tip rotation of up to 219 deg under 29 kPa actuation pressure. Finally, the potential capability of the bending-twisting soft fingers was verified through applications like screwing and object grasping.

References

1.
Chen
,
S.
,
Cao
,
Y.
,
Sarparast
,
M.
,
Yuan
,
H.
,
Dong
,
L.
,
Tan
,
X.
, and
Cao
,
C.
,
2020
, “
Soft Crawling Robots: Design, Actuation, and Locomotion
,”
Adv. Mater. Technol.
,
5
(
2
), p.
1900837
.
2.
Tang
,
Y.
, and
Yin
,
J.
,
2018
, “
Design of Multifunctional Soft Doming Actuator for Soft Machines
,”
Adv. Mater. Technol.
,
3
(
7
), p.
1800069
.
3.
Yang
,
D.
,
Verma
,
M. S.
,
Lossner
,
E.
,
Stothers
,
D.
, and
Whitesides
,
G. M.
,
2017
, “
Negative-Pressure Soft Linear Actuator With a Mechanical Advantage
,”
Adv. Mater. Technol.
,
2
(
1
), p.
1600164
.
4.
Zhang
,
G. Y.
,
Zhang
,
Y.
,
Li
,
B.
, and
Chen
,
G.
,
2021
, “
Progress of Twisted and Coiled Polymer Fiber Artificial Muscles and Its Application in Soft Robots
,”
Sci. Sin. Technol.
,
51
(
2
), pp.
119
136
.
5.
Giannaccini
,
M. E.
,
Georgilas
,
I.
,
Horsfield
,
I.
,
Peiris
,
B.
,
Lenz
,
A.
,
Pipe
,
A. G.
, and
Dogramadzi
,
S.
,
2014
, “
A Variable Compliance, Soft Gripper
,”
Auton. Robots
,
36
(
1
), pp.
93
107
.
6.
Wang
,
Z.
,
Or
,
K.
, and
Hirai
,
S.
,
2020
, “
A Dual-Mode Soft Gripper for Food Packaging
,”
Rob. Auton. Syst.
,
125
, p.
103427
.
7.
Zhou
,
Y.
,
Headings
,
L. M.
, and
Dapino
,
M. J.
,
2022
, “
Modeling of Soft Robotic Grippers Integrated With Fluidic Prestressed Composite Actuators
,”
ASME J. Mech. Rob.
,
14
(
3
), p.
031001
.
8.
Manti
,
M.
,
Pratesi
,
A.
,
Falotico
,
E.
,
Cianchetti
,
M.
, and
Laschi
,
C.
,
2016
, “
Soft Assistive Robot for Personal Care of Elderly People
,”
2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob)
,
Singapore
,
June 26–29
, pp.
833
838
.
9.
Nguyen
,
P. H.
, and
Zhang
,
W.
,
2020
, “
Design and Computational Modeling of Fabric Soft Pneumatic Actuators for Wearable Assistive Devices
,”
Sci. Rep.
,
10
(
1
), pp.
1
13
.
10.
Liang
,
X.
,
Cheong
,
H.
,
Chui
,
C. K.
, and
Yeow
,
C.-H.
,
2019
, “
A Fabric-Based Wearable Soft Robotic Limb
,”
ASME J. Mech. Rob.
,
11
(
3
), p.
031003
.
11.
Liu
,
Q.
,
Zuo
,
J.
,
Zhu
,
C.
, and
Xie
,
S. Q.
,
2020
, “
Design and Control of Soft Rehabilitation Robots Actuated by Pneumatic Muscles: State of the Art
,”
Future Gener. Comput. Syst.
,
113
, pp.
620
634
.
12.
Zhang
,
H.
,
Wang
,
Y.
,
Wang
,
M. Y.
,
Fuh
,
J. Y. H.
, and
Kumar
,
A. S.
,
2017
, “
Design and Analysis of Soft Grippers for Hand Rehabilitation
,”
International Manufacturing Science and Engineering Conference
,
Los Angeles, CA
,
June 4–8
, p.
V004T05A003
.
13.
Tolley
,
M. T.
,
Shepherd
,
R. F.
,
Mosadegh
,
B.
,
Galloway
,
K. C.
,
Wehner
,
M.
,
Karpelson
,
M.
,
Wood
,
R. J.
, and
Whitesides
,
G. M.
,
2014
, “
A Resilient, Untethered Soft Robot
,”
Soft Robot.
,
1
(
3
), pp.
213
223
.
14.
Chu
,
C.-Y.
, and
Patterson
,
R. M.
,
2018
, “
Soft Robotic Devices for Hand Rehabilitation and Assistance: A Narrative Review
,”
J. Neuroeng. Rehabil.
,
15
(
1
), p.
9
.
15.
Connolly
,
F.
,
Polygerinos
,
P.
,
Walsh
,
C. J.
, and
Bertoldi
,
K.
,
2015
, “
Mechanical Programming of Soft Actuators by Varying Fiber Angle
,”
Soft Robot.
,
2
(
1
), pp.
26
32
.
16.
Moseley
,
P.
,
Florez
,
J. M.
,
Sonar
,
H. A.
,
Agarwal
,
G.
,
Curtin
,
W.
, and
Paik
,
J.
,
2016
, “
Modeling, Design, and Development of Soft Pneumatic Actuators With Finite Element Method
,”
Adv. Eng. Mater.
,
18
(
6
), pp.
978
988
.
17.
Hiller
,
J.
, and
Lipson
,
H.
,
2014
, “
Dynamic Simulation of Soft Multimaterial 3D-Printed Objects
,”
Soft Robot.
,
1
(
1
), pp.
88
101
.
18.
Lotfiani
,
A.
,
Zhao
,
H.
,
Shao
,
Z.
, and
Yi
,
X.
,
2020
, “
Torsional Stiffness Improvement of a Soft Pneumatic Finger Using Embedded Skeleton
,”
ASME J. Mech. Rob.
,
12
(
1
), p.
011016
.
19.
She
,
Y.
,
Chen
,
J.
,
Shi
,
H.
, and
Su
,
H.-J.
,
2016
, “
Modeling and Validation of a Novel Bending Actuator for Soft Robotics Applications
,”
Soft Robot.
,
3
(
2
), pp.
71
81
.
20.
Largilliere
,
F.
,
Verona
,
V.
,
Coevoet
,
E.
,
Sanz-Lopez
,
M.
,
Dequidt
,
J.
, and
Duriez
,
C.
,
2015
, “
Real-Time Control of Soft-Robots Using Asynchronous Finite Element Modeling
,”
2015 IEEE International Conference on Robotics and Automation (ICRA)
,
Seattle, WA
,
May 25–30
, pp.
2550
2555
.
21.
Wehner
,
M.
,
Truby
,
R. L.
,
Fitzgerald
,
D. J.
,
Mosadegh
,
B.
,
Whitesides
,
G. M.
,
Lewis
,
J. A.
, and
Wood
,
R. J.
,
2016
, “
An Integrated Design and Fabrication Strategy for Entirely Soft, Autonomous Robots
,”
Nature
,
536
(
7617
), pp.
451
455
.
22.
Pfeifer
,
R.
,
Lungarella
,
M.
, and
Iida
,
F.
,
2012
, “
The Challenges Ahead for Bio-Inspired ‘Soft’ Robotics
,”
Commun. ACM
,
55
(
11
), pp.
76
87
.
23.
Liu
,
C.-H.
, and
Huang
,
G.-F.
,
2016
, “
A Topology Optimization Method With Constant Volume Fraction During Iterations for Design of Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
8
(
4
), p.
044505
.
24.
Sigmund
,
O.
,
1997
, “
On the Design of Compliant Mechanisms Using Topology Optimization
,”
J. Struct. Mech.
,
25
(
4
), pp.
493
524
.
25.
Zhang
,
H.
,
Kumar
,
A. S.
,
Chen
,
F.
,
Fuh
,
J. Y. H.
, and
Wang
,
M. Y.
,
2018
, “
Topology Optimized Multimaterial Soft Fingers for Applications on Grippers, Rehabilitation, and Artificial Hands
,”
IEEE/ASME Trans. Mechatron.
,
24
(
1
), pp.
120
131
.
26.
Dzierżanowski
,
G.
,
2012
, “
On the Comparison of Material Interpolation Schemes and Optimal Composite Properties in Plane Shape Optimization
,”
Struct. Multidiscip. Optim.
,
46
(
5
), pp.
693
710
.
27.
Luo
,
Z.
,
Zhang
,
N.
,
Wang
,
Y.
, and
Gao
,
W.
,
2013
, “
Topology Optimization of Structures Using Meshless Density Variable Approximants
,”
Int. J. Numer. Methods Eng.
,
93
(
4
), pp.
443
464
.
28.
Xie
,
Y. M.
, and
Steven
,
G. P.
,
1993
, “
A Simple Evolutionary Procedure for Structural Optimization
,”
Comput. Struct.
,
49
(
5
), pp.
885
896
.
29.
Wang
,
M. Y.
,
Wang
,
X.
, and
Guo
,
D.
,
2003
, “
A Level Set Method for Structural Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
192
(
1–2
), pp.
227
246
.
30.
Chen
,
F.
,
Xu
,
W.
,
Zhang
,
H.
,
Wang
,
Y.
,
Cao
,
J.
,
Wang
,
M. Y.
,
Ren
,
H.
,
Zhu
,
J.
, and
Zhang
,
Y. F.
,
2018
, “
Topology Optimized Design, Fabrication, and Characterization of a Soft Cable-Driven Gripper
,”
IEEE Robot. Autom. Lett.
,
3
(
3
), pp.
2463
2470
.
31.
Deaton
,
J. D.
, and
Grandhi
,
R. V.
,
2014
, “
A Survey of Structural and Multidisciplinary Continuum Topology Optimization: Post 2000
,”
Struct. Multidiscip. Optim.
,
49
(
1
), pp.
1
38
.
32.
Zhang
,
H.
,
Kumar
,
A. S.
,
Fuh
,
J. Y. H.
, and
Wang
,
M. Y.
,
2018
, “
Design and Development of a Topology-Optimized Three-Dimensional Printed Soft Gripper
,”
Soft Robot.
,
5
(
5
), pp.
650
661
.
33.
Bendsøe
,
M. P.
,
1989
, “
Optimal Shape Design as a Material Distribution Problem
,”
Struct. Optim.
,
1
(
4
), pp.
193
202
.
34.
Bendsøe
,
M. P.
, and
Sigmund
,
O.
,
1999
, “
Material Interpolation Schemes in Topology Optimization
,”
Arch. Appl. Mech.
,
69
(
9
), pp.
635
654
.
35.
Stolpe
,
M.
, and
Svanberg
,
K.
,
2001
, “
An Alternative Interpolation Scheme for Minimum Compliance Topology Optimization
,”
Struct. Multidiscip. Optim.
,
22
(
2
), pp.
116
124
.
36.
Bendsøe
,
M. P.
, and
Sigmund
,
O.
,
2004
, “Topology Optimization by Distribution of Isotropic Material,”
Topology Optimization
,
Springer
,
Berlin/Heidelberg
, pp.
1
69
.
You do not currently have access to this content.